input事件的处理

接InputReader::loopOnce()的
if (count) {
processEventsLocked(mEventBuffer, count);
}

input事件获取到就该处理了。

一 type >= EventHubInterface::FIRST_SYNTHETIC_EVENT的情况

DEVICE_ADDED和DEVICE_REMOVED已经说了,还有FINISHED_DEVICE_SCAN没说;它就是个尾巴,只有要add和remove就必须接上尾巴。这尾巴干什么的呢?
            case EventHubInterface::FINISHED_DEVICE_SCAN:
                handleConfigurationChangedLocked(rawEvent->when);
                break;
void InputReader::handleConfigurationChangedLocked(nsecs_t when) {
    // Reset global meta state because it depends on the list of all configured devices.
    updateGlobalMetaStateLocked();

    // Enqueue configuration changed.
    NotifyConfigurationChangedArgs args(when);
    mQueuedListener->notifyConfigurationChanged(&args);
}
void InputReader::updateGlobalMetaStateLocked() {
    mGlobalMetaState = 0;

    for (size_t i = 0; i < mDevices.size(); i++) {
        InputDevice* device = mDevices.valueAt(i);
        mGlobalMetaState |= device->getMetaState();
    }
}
int32_t InputDevice::getMetaState() {
    int32_t result = 0;
    size_t numMappers = mMappers.size();
    for (size_t i = 0; i < numMappers; i++) {
        InputMapper* mapper = mMappers[i];
        result |= mapper->getMetaState();
    }
    return result;
}
mMappers[]是什么?
这要从DEVICE_ADDED说起,
            case EventHubInterface::DEVICE_ADDED:
                addDeviceLocked(rawEvent->when, rawEvent->deviceId);
                break;
InputReader::addDeviceLocked()->createDeviceLocked()
InputDevice* InputReader::createDeviceLocked(int32_t deviceId,
        const InputDeviceIdentifier& identifier, uint32_t classes) {
    InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(),
            identifier, classes);

    // External devices.
    if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
        device->setExternal(true);
    }

    // Switch-like devices.
    if (classes & INPUT_DEVICE_CLASS_SWITCH) {
        device->addMapper(new SwitchInputMapper(device));
    }

    // Vibrator-like devices.
    if (classes & INPUT_DEVICE_CLASS_VIBRATOR) {
        device->addMapper(new VibratorInputMapper(device));
    }

    // Keyboard-like devices.
    uint32_t keyboardSource = 0;
    int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
    if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
        keyboardSource |= AINPUT_SOURCE_KEYBOARD;
    }
    if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
        keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
    }
    if (classes & INPUT_DEVICE_CLASS_DPAD) {
        keyboardSource |= AINPUT_SOURCE_DPAD;
    }
    if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
        keyboardSource |= AINPUT_SOURCE_GAMEPAD;
    }

    if (keyboardSource != 0) {
        device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
    }

    // Cursor-like devices.
    if (classes & INPUT_DEVICE_CLASS_CURSOR) {
        device->addMapper(new CursorInputMapper(device));
    }

    // Touchscreens and touchpad devices.
    if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
        device->addMapper(new MultiTouchInputMapper(device));
    } else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
        device->addMapper(new SingleTouchInputMapper(device));
    }

    // Joystick-like devices.
    if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
        device->addMapper(new JoystickInputMapper(device));
    }

    return device;
}
很明显是根据input device->classes来添加映射的。mMappers是一个<InputMapper*>类型的Vector,如果是INPUT_DEVICE_CLASS_SWITCH开关就添加一个device->addMapper(new SwitchInputMapper(device));如果是触摸屏或者触摸板:
    // Touchscreens and touchpad devices.
    if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
        device->addMapper(new MultiTouchInputMapper(device));
    } else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
        device->addMapper(new SingleTouchInputMapper(device));
  }
每种InputMapper都有自己的init、reset、process函数。addDeviceLocked()之前我们用的device都是通用Device对象,通过createDeviceLocked()实现了Device到InputDevice的转变。看最后有个mDevices.add(deviceId, device)。好熟悉啊,openDeviceLocked()->addDeviceLocked(device)里也有mDevices.add(device->id, device),长得真像,这个是add通用Device,class EventHub的 mDevices是这个摸样的:
KeyedVector<int32_t, Device*> mDevices;
现在是在class InputReader家里了,mDevices变样了:
KeyedVector<int32_t, InputDevice*> mDevices;
Device对象是在 EventHub::openDeviceLocked()里new出,在EventHub::getEvents()、EventHub::openDeviceLocked()和EventHub::closeDeviceLocked() close device的时候delete。
InputDevice在InputReader::addDeviceLocked()里new出,在removeDeviceLocked()里delete。
回到InputDevice::getMetaState(),先假设classes & INPUT_DEVICE_CLASS_TOUCH_MT,其他情况那么多,不care它们。那么这个InputMapper就是MultiTouchInputMapper,它没有实现getMetaState()函数,那找它爸爸class TouchInputMapper,也没有,那只能找它爷爷了class InputMapper。
int32_t InputMapper::getMetaState() {
    return 0;
}
看来对于 INPUT_DEVICE_CLASS_TOUCH_MT,mGlobalMetaState一直为0。mMetaState是指什么状态?只有KeyboardInputMapper设置getMetaState()函数。
int32_t KeyboardInputMapper::getMetaState() {
    return mMetaState;
}
mMetaState是meta key的一些状态,如果此时是keyboard的话mGlobalMetaState就可能记录了一些按键的dow和up。
handleConfigurationChangedLocked()中还有一段:
    // Enqueue configuration changed.
    NotifyConfigurationChangedArgs args(when);
  mQueuedListener->notifyConfigurationChanged(&args);
mQueuedListener是一个class QueuedInputListener的强指针。
void QueuedInputListener::notifyConfigurationChanged(
        const NotifyConfigurationChangedArgs* args) {
    mArgsQueue.push(new NotifyConfigurationChangedArgs(*args));
}
mArgsQueue是class QueuedInputListener中的一个Vector。这样一push就把NotifyConfigurationChangedArgs类型的实例push到Vector mArgsQueue中。这种push就是在Vector 中创建一个NotifyConfigurationChangedArgs对象的副本;这样就实现了将NotifyConfigurationChangedArgs事件推送到InputReader的队列中等候处理。其实是push到InputDispatch中,为什么这样说呢?再看下:
InputManager::InputManager(
        const sp<EventHubInterface>& eventHub,
        const sp<InputReaderPolicyInterface>& readerPolicy,
        const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) {
    mDispatcher = new InputDispatcher(dispatcherPolicy);
    mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
    initialize();
}
InputReader::InputReader(const sp<EventHubInterface>& eventHub,
        const sp<InputReaderPolicyInterface>& policy,
        const sp<InputListenerInterface>& listener) :
        mContext(this), mEventHub(eventHub), mPolicy(policy),
        mGlobalMetaState(0), mGeneration(1),
        mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX),
        mConfigurationChangesToRefresh(0) {
    mQueuedListener = new QueuedInputListener(listener);

    { // acquire lock
        AutoMutex _l(mLock);

        refreshConfigurationLocked(0);
        updateGlobalMetaStateLocked();
    } // release lock
}
InputReader的mQueuedListener就是用mDispatcher构建的,这就是InputReader和InputDispatch通信的方式,现在又event了,就要通知InputDispatch。

二 type < EventHubInterface::FIRST_SYNTHETIC_EVENT的情况

先找出对同一个deviceId可处理数据的长度batchSize,然后调用:
processEventsForDeviceLocked(deviceId, rawEvent, batchSize)->(device->process(rawEvents, count))
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
    // Process all of the events in order for each mapper.
    // We cannot simply ask each mapper to process them in bulk because mappers may
    // have side-effects that must be interleaved.  For example, joystick movement events and
    // gamepad button presses are handled by different mappers but they should be dispatched
    // in the order received.
    size_t numMappers = mMappers.size();
    for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
#if DEBUG_RAW_EVENTS
        ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%lld",
                rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value,
                rawEvent->when);
#endif

        if (mDropUntilNextSync) {
            if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
                mDropUntilNextSync = false;
#if DEBUG_RAW_EVENTS
                ALOGD("Recovered from input event buffer overrun.");
#endif
            } else {
#if DEBUG_RAW_EVENTS
                ALOGD("Dropped input event while waiting for next input sync.");
#endif
            }
        } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) {
            ALOGI("Detected input event buffer overrun for device %s.", getName().string());
            mDropUntilNextSync = true;
            reset(rawEvent->when);
        } else {
            for (size_t i = 0; i < numMappers; i++) {
                InputMapper* mapper = mMappers[i];
                mapper->process(rawEvent);
            }
        }
    }
}
for循环依次处理count个rawEvents。
(1) mDropUntilNextSync到下一次同步前的都扔掉,收到rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED时,该标记会置位,貌似底层client的循环buffer出现问题的时候会发送这个code。如果收到此code,要一直等到下一次的rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT,才能解放出来呢。InputDevice构造时,该标记是false。
(2) 刚说的rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED时,mDropUntilNextSync = true,同时执行reset(rawEvent->when)。
(3) 一般会一直走到最后一个else。
        } else {
            for (size_t i = 0; i < numMappers; i++) {
                InputMapper* mapper = mMappers[i];
                mapper->process(rawEvent);
            }
        }
假设过我们的mapper多点上报的触摸屏,所以mapper是MultiTouchInputMapper。

三 configure()函数

说process流程之前,先看看configure()函数,如何获取事件编码code,如何判断type A,还是type B。
需要刷新配置时,执行
void InputReader::requestRefreshConfiguration(uint32_t changes) {
    AutoMutex _l(mLock);

    if (changes) {
        bool needWake = !mConfigurationChangesToRefresh;
        mConfigurationChangesToRefresh |= changes;

        if (needWake) {
            mEventHub->wake();
        }
    }
}
InputReader::loopOnce()一开始
     if (changes) {
            mConfigurationChangesToRefresh = 0;
            timeoutMillis = 0;
            refreshConfigurationLocked(changes);
        } 
void InputReader::refreshConfigurationLocked(uint32_t changes) {
    mPolicy->getReaderConfiguration(&mConfig);
    mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);

    if (changes) {
        ALOGI("Reconfiguring input devices.  changes=0x%08x", changes);
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);

        if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) {
            mEventHub->requestReopenDevices();
        } else {
            for (size_t i = 0; i < mDevices.size(); i++) {
                InputDevice* device = mDevices.valueAt(i);
                device->configure(now, &mConfig, changes);
            }
        }
    }
}
void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) {
    mSources = 0;

    if (!isIgnored()) {
        if (!changes) { // first time only
            mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
        }

        if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) {
            if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) {
                sp<KeyCharacterMap> keyboardLayout =
                        mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier.descriptor);
                if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) {
                    bumpGeneration();
                }
            }
        }

        if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) {
            if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) {
                String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier);
                if (mAlias != alias) {
                    mAlias = alias;
                    bumpGeneration();
                }
            }
        }

        size_t numMappers = mMappers.size();
        for (size_t i = 0; i < numMappers; i++) {
            InputMapper* mapper = mMappers[i];
            mapper->configure(when, config, changes);
            mSources |= mapper->getSources();
        }
    }
}
MultiTouchInputMapper没有实现config()函数,继承了爸爸的。
void TouchInputMapper::configure(nsecs_t when,
        const InputReaderConfiguration* config, uint32_t changes) {
    InputMapper::configure(when, config, changes);

    mConfig = *config;

    if (!changes) { // first time only
        // Configure basic parameters.
        configureParameters();

        // Configure common accumulators.
        mCursorScrollAccumulator.configure(getDevice());
        mTouchButtonAccumulator.configure(getDevice());

        // Configure absolute axis information.
        configureRawPointerAxes();

        // Prepare input device calibration.
        parseCalibration();
        resolveCalibration();
    }

    if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
        // Update pointer speed.
        mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters);
        mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters);
        mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters);
    }

    bool resetNeeded = false;
    if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO
            | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT
            | InputReaderConfiguration::CHANGE_SHOW_TOUCHES))) {
        // Configure device sources, surface dimensions, orientation and
        // scaling factors.
        configureSurface(when, &resetNeeded);
    }

    if (changes && resetNeeded) {
        // Send reset, unless this is the first time the device has been configured,
        // in which case the reader will call reset itself after all mappers are ready.
        getDevice()->notifyReset(when);
    }
}
configureParameters()获取不可变的配置参数。
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN的条件为:
(1) if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)),要set INPUT_PROP_DIRECT。
(2) if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
deviceTypeString)) {
if (deviceTypeString == "touchScreen")
这是idc文件的配置。
void MultiTouchInputMapper::configureRawPointerAxes() {
    TouchInputMapper::configureRawPointerAxes();

    getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x);
    getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y);
    getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor);
    getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor);
    getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor);
    getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor);
    getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation);
    getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure);
    getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance);
    getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId);
    getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot);

    if (mRawPointerAxes.trackingId.valid
            && mRawPointerAxes.slot.valid
            && mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) {
        size_t slotCount = mRawPointerAxes.slot.maxValue + 1;
        if (slotCount > MAX_SLOTS) {
            ALOGW("MultiTouch Device %s reported %d slots but the framework "
                    "only supports a maximum of %d slots at this time.",
                    getDeviceName().string(), slotCount, MAX_SLOTS);
            slotCount = MAX_SLOTS;
        }
        mMultiTouchMotionAccumulator.configure(getDevice(),
                slotCount, true /*usingSlotsProtocol*/);
    } else {
        mMultiTouchMotionAccumulator.configure(getDevice(),
                MAX_POINTERS, false /*usingSlotsProtocol*/);
    }
}
前面一堆,设置一下code事件编码是哪些。
(1) 如果上报ID和slot,就是B类协议上报(B类协议是一定要上报ID的,那些不上报ID,也用input_mt_slot()是怎么回事?这怎么可能?B类是一定report ID的,input_mt_slot()会设置ABS_MT_TRACKING_ID的code),slotCount的值要限制在MAX_SLOTS(32)以内。接着调用:
void MultiTouchMotionAccumulator::configure(InputDevice* device,
        size_t slotCount, bool usingSlotsProtocol) {
    mSlotCount = slotCount;
    mUsingSlotsProtocol = usingSlotsProtocol;
    mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE);

    delete[] mSlots;
    mSlots = new Slot[slotCount];
}
mSlots是用来保存一个mt sync(SYN_MT_REPORT)或者mt slot(ABS_MT_SLOT)事件,对应一个点。mSlotCount说明一次最多能保存多少mt sync事件。对于type B mSlotCount最大值是32, mUsingSlotsProtocol = true。
(2) 对于type A,mSlotCount最大值是16,就是16个点,mUsingSlotsProtocol = false。
configureSurface(when, &resetNeeded)来确定device mode。
(1) 根据mParameters.deviceType确定mSource和mDeviceMode。
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
            && mParameters.hasAssociatedDisplay) {
        mSource = AINPUT_SOURCE_TOUCHSCREEN;
        mDeviceMode = DEVICE_MODE_DIRECT;
        if (hasStylus()) {
            mSource |= AINPUT_SOURCE_STYLUS;
        }
}
(2) configureRawPointerAxes()中获取的mRawPointerAxes.x和mRawPointerAxes.y确定width and height。触摸屏需要显示,mParameters.hasAssociatedDisplay = true;而且不是外部设备。 mHWRotation表示旋转方向。如果touch分辨率的尺寸和显示的尺寸不一致,需要调整系数mXScale和mYScale。还有其他的参数调整,用到再说。

四 回来继续我们mapper的处理流程

void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
    TouchInputMapper::process(rawEvent);

    mMultiTouchMotionAccumulator.process(rawEvent);
}
void TouchInputMapper::process(const RawEvent* rawEvent) {
    mCursorButtonAccumulator.process(rawEvent);
    mCursorScrollAccumulator.process(rawEvent);
    mTouchButtonAccumulator.process(rawEvent);

    if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
        sync(rawEvent->when);
    }
}
光标按钮作为设备键盘的处理,比如鼠标光标的左右中键、前进后退等等。
滚动光标作为轨迹处理,比如鼠标的中轮事件,REL_WHEEL表示纵向scroll事件,REL_HWHEEL表示横向scroll事件。
触摸屏按键处理,BTN_TOUCH的值指示按下和抬起,其余的code都是tool说明。
最后收到rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT进入sync()。对于type A一个sync事件包括多个mt synct(一个点),一个mt sync包括多个input event;对于type B一个sync事件包括多个mt slot(一个点),一个mt slot包括多个input event。如果不是sync事件呢?就走mMultiTouchMotionAccumulator.process(rawEvent)。
void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) {
    if (rawEvent->type == EV_ABS) {
        bool newSlot = false;
/*addDeviceLocked()中device->reset(when)->mapper->reset(when)->MultiTouchInputMapper::reset()->mMultiTouchMotionAccumulator.reset(getDevice())->clearSlots(),无论A类、B类mCurrentSlot都为-1。 MultiTouchInputMapper::syncTouch()的最后mMultiTouchMotionAccumulator.finishSync()只是type A的mCurrentSlot设为-1,B的呢?if (mUsingSlotsProtocol) mCurrentSlot = rawEvent->value;
*/
        if (mUsingSlotsProtocol) {
            if (rawEvent->code == ABS_MT_SLOT) {
                mCurrentSlot = rawEvent->value;//B类,是ID
                newSlot = true;//貌似只为了打印一个warnning
            }
        } else if (mCurrentSlot < 0) {//A类
            mCurrentSlot = 0;
        }

        if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) {
#if DEBUG_POINTERS
            if (newSlot) {
                ALOGW("MultiTouch device emitted invalid slot index %d but it "
                        "should be between 0 and %d; ignoring this slot.",
                        mCurrentSlot, mSlotCount - 1);
            }
#endif
        } else {
            Slot* slot = &mSlots[mCurrentSlot];

            switch (rawEvent->code) {
            case ABS_MT_POSITION_X:
                slot->mInUse = true;//mInUse标志其所在的slot是否使用
                slot->mAbsMTPositionX = rawEvent->value;
                break;
            case ABS_MT_POSITION_Y:
                slot->mInUse = true;
                slot->mAbsMTPositionY = rawEvent->value;
                break;
            case ABS_MT_TOUCH_MAJOR:
                slot->mInUse = true;
                slot->mAbsMTTouchMajor = rawEvent->value;
                break;
            case ABS_MT_TOUCH_MINOR:
                slot->mInUse = true;
                slot->mAbsMTTouchMinor = rawEvent->value;
                slot->mHaveAbsMTTouchMinor = true;
                break;
            case ABS_MT_WIDTH_MAJOR:
                slot->mInUse = true;
                slot->mAbsMTWidthMajor = rawEvent->value;
                break;
            case ABS_MT_WIDTH_MINOR:
                slot->mInUse = true;
                slot->mAbsMTWidthMinor = rawEvent->value;
                slot->mHaveAbsMTWidthMinor = true;
                break;
            case ABS_MT_ORIENTATION:
                slot->mInUse = true;
                slot->mAbsMTOrientation = rawEvent->value;
                break;
            case ABS_MT_TRACKING_ID:
                if (mUsingSlotsProtocol && rawEvent->value < 0) {
                    // The slot is no longer in use but it retains its previous contents,
                    // which may be reused for subsequent touches.
/*type B不会上报SYN_MT_REPORT,是以ID为负来判断抬起的,此时标记mInUse为 false,就是标记up了,有up说明之前是down的状态,如果不是down过的,那底层driver就出问题了,没有按下就抬起的事件能存在就有点奇迹了。我们虽然标记了up,但是并没有清除slot中的其他内容,这些内容可能会被重用,所以id为-1时,需要有sync事件发出来去处理这个up,不然以后再次按下的时候,这个up事件就消失了。这样一说按下的时候也要及时发sync处理,不然就被up覆盖了。所以底层每当有点按下或抬起都会上报sync事件*/
                    slot->mInUse = false;
                } else {
                    slot->mInUse = true;
                    slot->mAbsMTTrackingId = rawEvent->value;
                }
                break;
            case ABS_MT_PRESSURE:
                slot->mInUse = true;
                slot->mAbsMTPressure = rawEvent->value;
                break;
            case ABS_MT_DISTANCE:
                slot->mInUse = true;
                slot->mAbsMTDistance = rawEvent->value;
                break;
            case ABS_MT_TOOL_TYPE:
                slot->mInUse = true;
                slot->mAbsMTToolType = rawEvent->value;
                slot->mHaveAbsMTToolType = true;
                break;
            }
        }
    } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) {
        // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
        mCurrentSlot += 1;
/*对于type A只有收到mt sync的时候mCurrentSlot才加1,mt sync之前的code底层只会上报一次,上报多次就保留一次的,可见type A会把mt sync事件按照上报顺序存储在mSlots里。type B并不会上报SYN_MT_REPORT,mCurrentSlot = rawEvent->value,mCurrentSlot的取值就是上报ABS_MT_SLOT的ID,不一定顺序存储,是根据ID编号存储的,如果某个ID没有上报,对应的slot就空着。
*/
    }
}
如果事件不出意外,总会收到sync事件的。总能回到:
如果事件不出意外,总会收到sync事件的。总能回到:
    if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
        sync(rawEvent->when);
  }
它很长很长。

五 TouchInputMapper::sync()

1 mCurrentRawPointerData.clear()
hoveringIdBits 是hover事件的标识符清0,touchingIdBits是touch事件的标识符也清0,这两个事件是冲突的,有hover就没有touch。
2 syncTouch(when, &havePointerIds),havePointerIds (指示是否上报ID)为 true。
void MultiTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) {
    size_t inCount = mMultiTouchMotionAccumulator.getSlotCount();//type B=32,type A=16
    size_t outCount = 0;
    BitSet32 newPointerIdBits;

    for (size_t inIndex = 0; inIndex < inCount; inIndex++) {
        const MultiTouchMotionAccumulator::Slot* inSlot =//一个点
                mMultiTouchMotionAccumulator.getSlot(inIndex);
        if (!inSlot->isInUse()) {//对应点已up
            continue;
        }

        if (outCount >= MAX_POINTERS) {//最大支持16点,但是type B的slot是32?
#if DEBUG_POINTERS
            ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; "
                    "ignoring the rest.",
                    getDeviceName().string(), MAX_POINTERS);
#endif
            break; // too many fingers!
        }

        RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[outCount];
        outPointer.x = inSlot->getX();//一个点的信息
        outPointer.y = inSlot->getY();
        outPointer.pressure = inSlot->getPressure();
        outPointer.touchMajor = inSlot->getTouchMajor();
        outPointer.touchMinor = inSlot->getTouchMinor();
        outPointer.toolMajor = inSlot->getToolMajor();
        outPointer.toolMinor = inSlot->getToolMinor();
        outPointer.orientation = inSlot->getOrientation();
        outPointer.distance = inSlot->getDistance();
        outPointer.tiltX = 0;
        outPointer.tiltY = 0;

        outPointer.toolType = inSlot->getToolType();
        if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
            outPointer.toolType = mTouchButtonAccumulator.getToolType();
            if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
                outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
            }
        }
/*判断工具的,是手指或者笔。如果有上报ABS_MT_TOOL_TYPE,并且上报了合法的工具,那ok。否则mTouchButtonAccumulator.getToolType()来判断,判断不出来就是手指,默认的也是手指。
*/

        bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE
                && (mTouchButtonAccumulator.isHovering()
                        || (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0));
/*神奇的hover事件来了。hover是光标模仿悬停事件,移动到一个对象上以及移除这个对象。产生hover的条件:
(1) 非AMOTION_EVENT_TOOL_TYPE_MOUSE工具;
(2) 设置上报BTN_TOUCH,但上报的值mBtnTouch是0;或者上报了pressure,其值<=0。
*/
        outPointer.isHovering = isHovering;

        // Assign pointer id using tracking id if available.
        if (*outHavePointerIds) {//如果id有效,第一次为true
            int32_t trackingId = inSlot->getTrackingId();
            int32_t id = -1;
            if (trackingId >= 0) {//上报id,有点按下的情况
                for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) {
                    uint32_t n = idBits.clearFirstMarkedBit();
/*从idBits(idBits = mPointerIdBits)中找出第一个被标记的bit,并清除该bit,返回该bit的索引。如果所有bit都没有被标记,结果是未定义的;所以idBits.isEmpty()时for退出。*/
                    if (mPointerTrackingIdMap[n] == trackingId) {
                        id = n;
                    }
/*mPointerIdBits表示点的标识符,如果mPointerTrackingIdMap[n]中有标记过trackingId的值,通过for循环能找到这个n,如果找不到id就为-1,就走下面的标记流程。
*/
                }

                if (id < 0 && !mPointerIdBits.isFull()) {
                    id = mPointerIdBits.markFirstUnmarkedBit();
/*从mPointerIdBits中找出第一个未标记的bit,并标记该bit,返回该bit的索引。如果所有bit都被标记,结果是未定义的。mPointerIdBits.isFull()时,就没有地方标记了。
*/
                    mPointerTrackingIdMap[id] = trackingId;
                }
            }
/*mPointerIdBits的bit为1标记的是有一个点按下;32bit系统,可以标记32点。mPointerTrackingIdMap[]与mPointerIdBits对应,设置mPointerIdBits的第id(从0开始)个bit的同时,要设置mPointerTrackingIdMap[id] = trackingId。mPointerTrackingIdMap[id]的值存储的是点的ID,通过id可以找到ID。
*/
            if (id < 0) {
/*不上报ID(只有type A会不上报)会走到这里一次,或者上报ID -1时也到这里,都会有清除动作。只要是type A总会设置*outHavePointerIds = false的。
(1) type A不上报ID的按下,在syncTouch()中hover、touch、pointer的标识符都是0,所以判断按下抬起的状态不在这个函数里。
(2) type A不上报ID的抬起,如果上报mt synch和sync之外还报了别的input event,slot->mInUse = true,会记录最后一次outPointer,只是坐标为0。还可能遗留一个hover,因为outPointer.isHovering = isHovering,如果条件满足最后的isHovering被设置,以后可用。
(3) type A上报id(抬起时为-1)的抬起,也会记录最后一次outPointer和保留isHovering状态。
(4) 上报id,typeB的抬起会设置slot->mInUse = false,不会走到这里,就不会记录最后一次outPointer,也不会将之前记录的hover、touch、pointer的标识符都清0。
*/
                *outHavePointerIds = false;
                mCurrentRawPointerData.clearIdBits();//清hover和touch表示符
                newPointerIdBits.clear();//清点数表示符
            } else {
                outPointer.id = id;
/*此id表示mPointerIdBits的第id个bit,通过mPointerTrackingIdMap[id]可以找到点上报来的ID*/
                mCurrentRawPointerData.idToIndex[id] = outCount;//标记点来的顺序
                mCurrentRawPointerData.markIdBit(id, isHovering);//设hover或touch标识
                newPointerIdBits.markBit(id);//设置点的标识
            }
        }

        outCount += 1;
    }

    mCurrentRawPointerData.pointerCount = outCount;//总点数
    mPointerIdBits = newPointerIdBits;//设置点的标识符

  mMultiTouchMotionAccumulator.finishSync();
  /*type A清slot,B不需要清,MultiTouchMotionAccumulator::process()中会处理*/
}
syncTouch()执行后点的信息就存到了mCurrentRawPointerData中。
3 type A不报ID时,设置havePointerIds为false,走上边的打印;type A无论报不报ID抬起时的sync都走上边。type B按下和抬起,type A报ID时的按下走下边。
4 TouchInputMapper构造时mDeviceMode(DEVICE_MODE_DISABLED),configure()执行之后为mDeviceMode == DEVICE_MODE_DIRECT表示touch。
5 type A不报ID或者(无论报不报ID)up时才走assignPointerIds()。
void TouchInputMapper::assignPointerIds() {
    uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount;
    uint32_t lastPointerCount = mLastRawPointerData.pointerCount;

    mCurrentRawPointerData.clearIdBits();//清hover、touch标识bit,用自己的方法从新判断

    if (currentPointerCount == 0) {//总点数为0
        // No pointers to assign.
        return;
    }

    if (lastPointerCount == 0) {//上一点数为0,所有点都是新点
        // All pointers are new.
        for (uint32_t i = 0; i < currentPointerCount; i++) {
            uint32_t id = i;
            mCurrentRawPointerData.pointers[i].id = id;
/*type A是按点顺序存储的,type B的在上面,根据id能找到点的ID,这个不能*/
            mCurrentRawPointerData.idToIndex[id] = i;
            mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(i));
/*标记一下touch或hover事件*/
        }
        return;
    }

    if (currentPointerCount == 1 && lastPointerCount == 1
            && mCurrentRawPointerData.pointers[0].toolType
                    == mLastRawPointerData.pointers[0].toolType) {
        uint32_t id;
        if (!mCurrentRawPointerData.isHovering(0) &&
                !mLastRawPointerData.hoveringIdBits.isEmpty()) {
            // 1 finger released and touching again. Should be safe to
            // reset to id 0.
/*上一次产生了hover,那是一个上报了BTN或者pressure的up;现在没有hover了,说明有手指按下了,也是一个新点*/
            id = 0;
        } else {
            // Only one pointer and no change in count so it must have the same id as before.
//一直是一个点
            id = mLastRawPointerData.pointers[0].id;
        }
        mCurrentRawPointerData.pointers[0].id = id;
        mCurrentRawPointerData.idToIndex[id] = 0;
        mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(0));
        return;
    }

    // General case.
    // We build a heap of squared euclidean distances between current and last pointers
    // associated with the current and last pointer indices.  Then, we find the best
    // match (by distance) for each current pointer.
    // The pointers must have the same tool type but it is possible for them to
    // transition from hovering to touching or vice-versa while retaining the same id.
    PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
/*通常情况
我们构造一个存储当前点和上一个点(与当前点和上一个点索引相关的)之间euclidean距离平方值的heap,我们就可以根据距离为当前点找到最好的匹配。
这些点必须使用同一种tool type,保持同一个id时,该tool可能使这些点从hovering转到touching,反之亦然。
*/
    uint32_t heapSize = 0;
    for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
            currentPointerIndex++) {
        for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
                lastPointerIndex++) {
            const RawPointerData::Pointer& currentPointer =
                    mCurrentRawPointerData.pointers[currentPointerIndex];
            const RawPointerData::Pointer& lastPointer =
                    mLastRawPointerData.pointers[lastPointerIndex];
            if (currentPointer.toolType == lastPointer.toolType) {
                int64_t deltaX = currentPointer.x - lastPointer.x;
                int64_t deltaY = currentPointer.y - lastPointer.y;

                uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);

                // Insert new element into the heap (sift up).
                heap[heapSize].currentPointerIndex = currentPointerIndex;
                heap[heapSize].lastPointerIndex = lastPointerIndex;
                heap[heapSize].distance = distance;
                heapSize += 1;
            }	
        }
    }
/*两次for循环结束后,heap中存储了每个当前点与上一次所有点的euclidean距离。
*/
    // Heapify
    for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
        startIndex -= 1;       
        for (uint32_t parentIndex = startIndex; ;) {
            uint32_t childIndex = parentIndex * 2 + 1;
            if (childIndex >= heapSize) {
                break;
            }

            if (childIndex + 1 < heapSize
                    && heap[childIndex + 1].distance < heap[childIndex].distance) {
                childIndex += 1;
            }

            if (heap[parentIndex].distance <= heap[childIndex].distance) {
                break;
            }

            swap(heap[parentIndex], heap[childIndex]);
            parentIndex = childIndex;
        }
    }
/*这是个堆排序的过程,堆本身是一个二叉树,类似于
                0
              /    \
               1     2
              / \   / \
             3  4   5  6
            / \    / \
         7  8
code中需要的是最小堆的性质,如果不满足就调整。从最后一个可以作为根的结点开始。例如heapSize 为9,先把heap[3]结点为根的分支,调整为最小堆;然后调整heap[2]结点为根的分支;最后调整以heap[0]结点为根的分支,就是整个树,先将heap[0]与heap[1]、heap[2]中值小的比较,如果heap[0]最小,那相安无事;如果heap[0]不最小,那就调整为最小堆;假设heap[0]与heap[2]swap了,那需要重新调整heap[2]的分支了。最后形成的树是根结点值最小,左右结点不确定。
*/
#if DEBUG_POINTER_ASSIGNMENT
    ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize);
    for (size_t i = 0; i < heapSize; i++) {
        ALOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
                i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
                heap[i].distance);
    }
#endif

    // Pull matches out by increasing order of distance.
    // To avoid reassigning pointers that have already been matched, the loop keeps track
    // of which last and current pointers have been matched using the matchedXXXBits variables.
  // It also tracks the used pointer id bits.
  /*按照距离增加的顺序取出匹配项。为了避免重新分配已经匹配的指针,循环保持跟踪表示上一个和当前点已经匹配的matchedXXXBits变量,还跟踪已经使用点id的对应bit位。
  */
    BitSet32 matchedLastBits(0);
    BitSet32 matchedCurrentBits(0);
    BitSet32 usedIdBits(0);
    bool first = true;
    for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) {
        while (heapSize > 0) {
            if (first) {
                // The first time through the loop, we just consume the root element of
                // the heap (the one with smallest distance).
/*通过第一次循环,我们要消耗掉heap的根结点,因为这颗树中唯一可以判断大小的就是它,它是距离最小的一个结点。
*/
                first = false;
            } else {
                // Previous iterations consumed the root element of the heap.
                // Pop root element off of the heap (sift down).
/*之前的迭代消耗了heap的根结点,弹出heap的根结点,进行sift down(向下筛选调整),每次取堆顶端的数,然后重新构造堆,如此迭代,直到所有的数据都取出。
*/
                heap[0] = heap[heapSize];//填充被取走后的heap[0]
//重新构造堆
                for (uint32_t parentIndex = 0; ;) {
                    uint32_t childIndex = parentIndex * 2 + 1;
                    if (childIndex >= heapSize) {
                        break;
                    }

                    if (childIndex + 1 < heapSize
                            && heap[childIndex + 1].distance < heap[childIndex].distance) {
                        childIndex += 1;
                    }

                    if (heap[parentIndex].distance <= heap[childIndex].distance) {
                        break;
                    }

                    swap(heap[parentIndex], heap[childIndex]);
                    parentIndex = childIndex;
                }

#if DEBUG_POINTER_ASSIGNMENT
                ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize);
                for (size_t i = 0; i < heapSize; i++) {
                    ALOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
                            i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
                            heap[i].distance);
                }
#endif
            }

            heapSize -= 1;
/*每次都取堆顶的最小值*/
            uint32_t currentPointerIndex = heap[0].currentPointerIndex;
            if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched

            uint32_t lastPointerIndex = heap[0].lastPointerIndex;
            if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched

            matchedCurrentBits.markBit(currentPointerIndex);
            matchedLastBits.markBit(lastPointerIndex);

            uint32_t id = mLastRawPointerData.pointers[lastPointerIndex].id;
            mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
/*last点和current点匹配上了,current点的ID就找到了*/
            mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
/*idToIndex[id]里的值就是标记点来的顺序*/
            mCurrentRawPointerData.markIdBit(id,
                    mCurrentRawPointerData.isHovering(currentPointerIndex));
            usedIdBits.markBit(id);//标记已经使用点id的对应bit位

#if DEBUG_POINTER_ASSIGNMENT
            ALOGD("assignPointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
                    lastPointerIndex, currentPointerIndex, id, heap[0].distance);
#endif
            break;
        }
    }
/*内存while就是控制sift down(向下筛选调整),每次取堆顶端的数,然后重新构造堆;外层for就是控制迭代次数,直到所有的数据都取出。
*/
  // Assign fresh ids to pointers that were not matched in the process.
  /*如果last点数多,那么至此所有点都匹配上了;但是如果last点少,current中还有未匹配的点呢,需要为这些新点分配一下ids
  */
    for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) {
        uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit();
        uint32_t id = usedIdBits.markFirstUnmarkedBit();

        mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
        mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
        mCurrentRawPointerData.markIdBit(id,
                mCurrentRawPointerData.isHovering(currentPointerIndex));

#if DEBUG_POINTER_ASSIGNMENT
        ALOGD("assignPointerIds - assigned: cur=%d, id=%d",
                currentPointerIndex, id);
#endif
    }
}
能进入这个函数,说明没有上报ID,是type A;如果上报ID,在syncTouch()中就把这些工作做了,就可以用上报的ID标识各个点了,很容易判断down和up。没有上报ID,就需要用一些算法来匹配当前点与上一点,从而找到软件上的id,最终判断出down和up。
需要说明的是:type A正常不报ID的按下,走这里没有问题,也不会产生hover事件。但是type A抬起的时候,是有说法的。
(1) 只要上报了BTN或者pressure,就会产生hover事件,所以最后都不会产生touch事件;对于单点保持,可能是上次产生了hover,如果产生了hover也只能是last点数为1,因为hover是上报up,上报up的时候只上报一点的信息附加一个mt sync和sync,此种情况当做新点处理,id为0;也可能是单点移动,此种情况保持id不变。
(2) 不上报BTN,也不上报pressure,也不上报ID;up时不会产生hover,也能正常抬起,因为syncTouch()中inSlot->isInUse()为false,最后的current点数为0。
(3) 不上报BTN,也不上报pressure,但是只上报ID -1,附加一个mt sync和sync,syncTouch()中inSlot->isInUse()为true,此时current点数为1,同时设置*outHavePointerIds = false,进入assignPointerIds()时,就一直有一个(0,0)点在那,永远找不到up。只要不是只报input_mt_sync(ts->input_dev)的就都会有问题的。不报ID的type A syncTouch()就出来了点的基本信息和点数。
对于上报ID的情况,点的提取是在syncTouch()中完成的,从底层上报点的ABS_MT_TRACKING_ID,mPointerTrackingIdMap[n] = trackingId,只用了一次,如果第二次上来的点和第一次的有重复,就根据trackingId找到id。一直使用的id是和hoveringIdBits相对应的,也是和mPointerIdBits相对应的。要求底层上报id是按顺序的,如果第一次点的上报ID为:
0、1、2、3
第二次如果第2点抬起,要求点的ID为:
0、1、3
然后再上报一个2为-1的ID
如果第二点抬起后为:
0、1、2
就找不到是哪个点抬起了。
ABS_MT_TRACKING_ID就是点出来的顺序,从0开始的话就与一直使用的id一致;从1开始也可以,不能与id一一对应而已。
type中 input_mt_slot(struct input_dev *dev, int slot)里的slot才是点的ID。type A上报ID一定是标记好点出来的顺序,就是上面说的顺序。
6 cookPointerData()进行校正处理,包括原始坐标的转换,旋转,touchMajor和toolMajor的size校正。
    mCurrentCookedPointerData.hoveringIdBits = mCurrentRawPointerData.hoveringIdBits;
    mCurrentCookedPointerData.touchingIdBits = mCurrentRawPointerData.touchingIdBits;
7 分发
dispatchHoverExit(when, policyFlags);
分发hover exit事件,指针没有down,但是位于某个窗口或视图范围内。前提是mSentHoverEnter = true,并且上一次产生了hover,当前hover消失。
mSentHoverEnter是标识有hover enter事件,指针没有down,但是进入了某个窗口或视图范围内。是在dispatchHoverEnterAndMove(when, policyFlags)中设置的。前提是上一次没有hover,当前产生了hover。
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
    BitSet32 currentIdBits = mCurrentCookedPointerData.touchingIdBits;
    BitSet32 lastIdBits = mLastCookedPointerData.touchingIdBits;
    int32_t metaState = getContext()->getGlobalMetaState();
    int32_t buttonState = mCurrentButtonState;

    if (currentIdBits == lastIdBits) {
        if (!currentIdBits.isEmpty()) {
            // No pointer id changes so this is a move event.
            // The listener takes care of batching moves so we don't have to deal with that here.
/*没有指针id改变,所以这是一个移动事件。监视器负责批处理移动事件,我们不需要处理*/
            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState,
                    AMOTION_EVENT_EDGE_FLAG_NONE,
                    mCurrentCookedPointerData.pointerProperties,
                    mCurrentCookedPointerData.pointerCoords,
                    mCurrentCookedPointerData.idToIndex,
                    currentIdBits, -1,
                    mOrientedXPrecision, mOrientedYPrecision, mDownTime);
        }
    } else {
        // There may be pointers going up and pointers going down and pointers moving
        // all at the same time.
        BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
        BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
        BitSet32 dispatchedIdBits(lastIdBits.value);

        // Update last coordinates of pointers that have moved so that we observe the new
        // pointer positions at the same time as other pointers that have just gone up.
        bool moveNeeded = updateMovedPointers(
                mCurrentCookedPointerData.pointerProperties,
                mCurrentCookedPointerData.pointerCoords,
                mCurrentCookedPointerData.idToIndex,
                mLastCookedPointerData.pointerProperties,
                mLastCookedPointerData.pointerCoords,
                mLastCookedPointerData.idToIndex,
                moveIdBits);
        if (buttonState != mLastButtonState) {
            moveNeeded = true;
        }

        // Dispatch pointer up events.
        while (!upIdBits.isEmpty()) {
            uint32_t upId = upIdBits.clearFirstMarkedBit();

            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0,
                    mLastCookedPointerData.pointerProperties,
                    mLastCookedPointerData.pointerCoords,
                    mLastCookedPointerData.idToIndex,
                    dispatchedIdBits, upId,
                    mOrientedXPrecision, mOrientedYPrecision, mDownTime);
            dispatchedIdBits.clearBit(upId);
        }

        // Dispatch move events if any of the remaining pointers moved from their old locations.
        // Although applications receive new locations as part of individual pointer up
        // events, they do not generally handle them except when presented in a move event.
        if (moveNeeded) {
            ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0,
                    mCurrentCookedPointerData.pointerProperties,
                    mCurrentCookedPointerData.pointerCoords,
                    mCurrentCookedPointerData.idToIndex,
                    dispatchedIdBits, -1,
                    mOrientedXPrecision, mOrientedYPrecision, mDownTime);
        }

        // Dispatch pointer down events using the new pointer locations.
        while (!downIdBits.isEmpty()) {
            uint32_t downId = downIdBits.clearFirstMarkedBit();
            dispatchedIdBits.markBit(downId);

            if (dispatchedIdBits.count() == 1) {
                // First pointer is going down.  Set down time.
                mDownTime = when;
            }

            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0,
                    mCurrentCookedPointerData.pointerProperties,
                    mCurrentCookedPointerData.pointerCoords,
                    mCurrentCookedPointerData.idToIndex,
                    dispatchedIdBits, downId,
                    mOrientedXPrecision, mOrientedYPrecision, mDownTime);
        }
    }
}
dispatchTouches()分出来move、down和up事件,调用dispatchMotion()来分发处理。
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
        int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
        const PointerProperties* properties, const PointerCoords* coords,
        const uint32_t* idToIndex, BitSet32 idBits,
        int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
    PointerCoords pointerCoords[MAX_POINTERS];
    PointerProperties pointerProperties[MAX_POINTERS];
    uint32_t pointerCount = 0;
    while (!idBits.isEmpty()) {
        uint32_t id = idBits.clearFirstMarkedBit();
        uint32_t index = idToIndex[id];
        pointerProperties[pointerCount].copyFrom(properties[index]);//id信息
        pointerCoords[pointerCount].copyFrom(coords[index]);//值信息

        if (changedId >= 0 && id == uint32_t(changedId)) {
            action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
        }
/*action中的bits代表一个down或者up的指针索引,我们把实际的指针索引就存在<< AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT的位置,后面用的时候>>AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT就取出了这个索引*/
        pointerCount += 1;
    }

    ALOG_ASSERT(pointerCount != 0);

    if (changedId >= 0 && pointerCount == 1) {
        // Replace initial down and final up action.
        // We can compare the action without masking off the changed pointer index
        // because we know the index is 0.
/*替换最初的down和最终的up。
我们可以比较没有屏蔽掉改变指针索引的action,因为我们知道index是0(id不一定是0)。
*/
        if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
            action = AMOTION_EVENT_ACTION_DOWN;
        } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
            action = AMOTION_EVENT_ACTION_UP;
        } else {
            // Can't happen.
            ALOG_ASSERT(false);
        }
    }

    NotifyMotionArgs args(when, getDeviceId(), source, policyFlags,
            action, flags, metaState, buttonState, edgeFlags,
            mViewport.displayId, pointerCount, pointerProperties, pointerCoords,
            xPrecision, yPrecision, downTime);

    // resize touch coords for (dual_display && freescale_disabled)
    // rw.vout.scale: off/freescale_disabled, on/freescale_enabled
    char prop_dual[PROPERTY_VALUE_MAX];
    if (!mPadmouseStatus && property_get("ro.vout.dualdisplay2", prop_dual, "false")
        && (strcmp(prop_dual, "true") == 0)
        && (action == AMOTION_EVENT_ACTION_DOWN
            || action == AMOTION_EVENT_ACTION_UP
            || action == AMOTION_EVENT_ACTION_MOVE)) {
         
        bool  resize_touch = false;        

        if (strncmp(g_dmode_str, "panel", 5) != 0) {
            char prop[PROPERTY_VALUE_MAX];
            if (property_get("rw.vout.scale", prop, "on")
                && strcmp(prop, "off") == 0) {
                resize_touch = true;
            }                    
        }
        
        if (resize_touch) {
            int x = 0, y = 0, w = 0, h = 0;
            if(sscanf(g_daxis_str, "%d %d %d %d", &x,&y,&w,&h) > 0) {
                int ww = w, hh = h;
                if (strncmp(g_dmode_str, "1080p", 5) == 0) {
                    ww = 1920;
                    hh = 1080;
                } else if (strncmp(g_dmode_str, "720p", 4) == 0) {
                    ww = 1280;
                    hh = 720;                
                } else if (strncmp(g_dmode_str, "480p", 4) == 0) {
                    ww = 720;
                    hh = 480;                   
                } 
               
                if (ww >= w) x = (ww - w) / 2;
                if (hh >= h) y = (hh - h) / 2;
               
                for (uint32_t i = 0; i < args.pointerCount; i++) {
                    float coords_x = args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X);
                    float coords_y = args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y);
                    if (ww >= w && hh >= h) {   //1024*600 < 1280*720
                        coords_x = coords_x*(w + 2*x)/w;
                        coords_y = coords_y*(h + 2*y)/h;
                        coords_x = (coords_x - x)*(w + 2*x)/w;
                        coords_y = (coords_y - y)*(h + 2*y)/h;
                        coords_x = coords_x*w/(w + 2*x);
                        coords_y = coords_y*h/(h + 2*y);
                    } else if (ww >= w && hh < h) {   //1024*768 > 1280*720
                        coords_x = coords_x*(w + 2*x)/w;
                        coords_y = coords_y*hh/h;
                        coords_x = (coords_x - x)*(w + 2*x)/w;
                        coords_y = (coords_y - 0)*hh/h;
                        coords_x = coords_x*w/(w + 2*x);
                        coords_y = coords_y*h/hh;
                    } else {                    //1024*600 > 720*480
                        coords_x = coords_x*ww/w;
                        coords_y = coords_y*hh/h;
                        coords_x = (coords_x - 0)*ww/w;
                        coords_y = (coords_y - 0)*hh/h;
                        coords_x = coords_x*w/ww;
                        coords_y = coords_y*h/hh;
                    }
                    args.pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, coords_x);
                    args.pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, coords_y);
                }                     
            }   
        }    
    }        
  getListener()->notifyMotion(&args);
  //至此各event已经分发,并且通知inputDispatch。
}

你可能感兴趣的:(android)