这几天跑了Opencv中的camshift算法,发现目标需要自己去选,够费劲的。
突然想要,是hog进行人体检测,然后用shift去跟踪是不是效果会好些。
camshift的跟踪还好,主要是hog的检测,opencv中hog检测的误检率还是很高的。
程序我直接拿来了opencv中现成的代码,也就是个简单的demo。大家看看,感觉下效果就可以了
如果需要更精确的效果,程序还需要很多优化,毕竟opencv中的camshift算法紧紧是重心的跟踪迭代。
程序如下:
#include <fstream> #include <string> #include <cv.h> #include <highgui.h> #include <ml.h> #include <iostream> #include <fstream> #include <string> #include <vector> #include "cvaux.h" #include <iostream> #include <stdio.h> #include <string.h> #include <ctype.h> using namespace cv; using namespace std; Rect r ; int track_object = 0; Rect ObjectDectd(IplImage* frame,int object,Rect r); IplImage* MeanSift(IplImage *frame,Rect r); int main() { int number = 0; CvCapture* capture = 0; capture = cvCaptureFromAVI("112218.avi"); if( !capture ) { fprintf(stderr,"Could not initialize capturing...\n"); return -1; } cvNamedWindow( "HogSiftDemo", 1 ); for(;;) { cout<<number<<endl; number++; IplImage* frame = 0; frame = cvQueryFrame( capture ); //frame = cvLoadImage("D:\\My Documents\\Visual Studio 2008\\Projects\\hogmeansift\\Debug\\crop001009.png"); if(track_object == 0) { r = ObjectDectd(frame,track_object,r); if(r.x!=0) track_object = -1; } else frame = MeanSift(frame,r); //cvRectangle(frame, r.tl(), r.br(), cv::Scalar(0,255,0), 3); cvShowImage("HogSiftDemo", frame); waitKey(1); } cvReleaseCapture( &capture ); cvDestroyWindow("HogSiftDemo"); return 0; } Rect ObjectDectd(IplImage* frame,int object,Rect r) { HOGDescriptor hog; hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); Mat img; img = frame; fflush(stdout); vector<Rect> found, found_filtered; double t = (double)getTickCount(); int can = img.channels(); hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2); t = (double)getTickCount() - t; printf("tdetection time = %gms\n", t*1000./cv::getTickFrequency()); size_t i, j; if(found.size()!=0) { //object = 1; for( i = 0; i < found.size(); i++ ) { r = found[i]; for( j = 0; j < found.size(); j++ ) if( j != i && (r & found[j]) == r) break; if( j == found.size() ) found_filtered.push_back(r); } for( i = 0; i < found_filtered.size(); i++ ) { r = found_filtered[i]; r.x += cvRound(r.width*0.1); r.width = cvRound(r.width*1); r.y += cvRound(r.height*0.07); r.height = cvRound(r.height*0.8); //cvRectangle(frame, r.tl(), r.br(), cv::Scalar(0,255,0), 3); } } return r; } IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0; CvHistogram *hist = 0; int backproject_mode = 0; int select_object = 0; //int track_object = 0; int show_hist = 1; CvPoint origin; CvRect selection; CvRect track_window; CvBox2D track_box; CvConnectedComp track_comp; int hdims = 16; float hranges_arr[] = {0,180}; float* hranges = hranges_arr; int vmin = 10, vmax = 256, smin = 30; int i, bin_w, c; CvScalar hsv2rgb( float hue ) { int rgb[3], p, sector; static const int sector_data[][3]= {{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}}; hue *= 0.033333333333333333333333333333333f; sector = cvFloor(hue); p = cvRound(255*(hue - sector)); p ^= sector & 1 ? 255 : 0; rgb[sector_data[sector][0]] = 255; rgb[sector_data[sector][1]] = 0; rgb[sector_data[sector][2]] = p; return cvScalar(rgb[2], rgb[1], rgb[0],0); } IplImage* MeanSift(IplImage *frame,Rect r) { if( !image ) { /* allocate all the buffers */ image = cvCreateImage( cvGetSize(frame), 8, 3 ); image->origin = frame->origin; hsv = cvCreateImage( cvGetSize(frame), 8, 3 ); hue = cvCreateImage( cvGetSize(frame), 8, 1 ); mask = cvCreateImage( cvGetSize(frame), 8, 1 ); backproject = cvCreateImage( cvGetSize(frame), 8, 1 ); hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 ); // histimg = cvCreateImage( cvSize(320,200), 8, 3 ); //cvZero( histimg ); } cvCopy( frame, image, 0 ); cvCvtColor( image, hsv, CV_BGR2HSV ); if( track_object ) { int _vmin = vmin, _vmax = vmax; cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0), cvScalar(180,256,MAX(_vmin,_vmax),0), mask ); cvSplit( hsv, hue, 0, 0, 0 ); if( track_object < 0 ) { selection.height = r.height; selection.width = r.width; selection.x = r.x; selection.y = r.y; float max_val = 0.f; cvSetImageROI( hue, selection ); cvSetImageROI( mask, selection ); cvCalcHist( &hue, hist, 0, mask ); cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 ); cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); cvResetImageROI( hue ); cvResetImageROI( mask ); track_window = selection; track_object = 1; } cvCalcBackProject( &hue, backproject, hist ); cvAnd( backproject, mask, backproject, 0 ); cvCamShift( backproject, track_window, cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ), &track_comp, &track_box ); track_window = track_comp.rect; if( backproject_mode ) cvCvtColor( backproject, image, CV_GRAY2BGR ); if( !image->origin ) track_box.angle = -track_box.angle; //cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 ); Rect r; r.x = track_comp.rect.x; r.width = track_comp.rect.height; r.y = track_comp.rect.y; r.height = track_comp.rect.width; cvRectangle(image, r.tl(), r.br(), cv::Scalar(0,255,0), 3); } if( select_object && selection.width > 0 && selection.height > 0 ) { cvSetImageROI( image, selection ); cvXorS( image, cvScalarAll(255), image, 0 ); cvResetImageROI( image ); } return image; }