抽屉原理的妙用

Find a multiple
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3089   Accepted: 1370   Special Judge

Description

The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000. This numbers are not necessarily different (so it may happen that two or more of them will be equal). Your task is to choose a few of given numbers ( 1 <= few <= N ) so that the sum of chosen numbers is multiple for N (i.e. N * k = (sum of chosen numbers) for some natural number k).

Input

The first line of the input contains the single number N. Each of next N lines contains one number from the given set.

Output

In case your program decides that the target set of numbers can not be found it should print to the output the single number 0. Otherwise it should print the number of the chosen numbers in the first line followed by the chosen numbers themselves (on a separate line each) in arbitrary order.

If there are more than one set of numbers with required properties you should print to the output only one (preferably your favorite) of them.

Sample Input

5
1
2
3
4
1

Sample Output

2
2
3

题目大意就是先给出一个数N,接着再给出N个数,要你从这N个数中任意选择1个或多个数,使得其和是N的倍数

如果找不到这样的答案 则输出0

答案可能有多个,但智勇任意输出一个解就行。

输出的第一行是选择元素的个数M,接着M行分别是选择的元素的值

刚开始的时候并不同为什么这一题回事抽屉原理,分析后才明白,昨晚后更有体会

实际上此题一定有解,不存在输出0的结果

证明如下

我们可以依次求出a[0],a[0]+a[1],a[0]+a[1]+a[2],......,a[0]+a[1]+a[2]...+a[n];

假设分别是sum[0],sum[1],sum[2],......,sum[n]

如果在某一项存在是N的倍数,则很好解,即可直接从第一项开始直接输出答案

但如果不存在,则sum[i]%N的值必定在[1,N-1]之间,又由于有n项sum,有抽屉原理:

 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

则必定有一对i,j,使得sum[i]=sum[j],其中i!=j,不妨设j>i

则(sum[j]-sum[i])%N=0,故sum[j]-sum[i]是N的倍数

则只要输出从i+1~j的所有的a的值就是答案

然后就利用这个思路就可以直接的解出该题的答案

http://www.cnblogs.com/ACShiryu

刚开始时是因为第一次做这题,代码写的过长,实际上第一种情况和第二种情况可以算一种情况考虑,关于简化后的的代码可以参考

http://www.cnblogs.com/ACShiryu/archive/2011/08/09/poj3370.html

参考代码:

复制代码
 1 #include<iostream>
 2 #include<cstdlib>
 3 #include<cstdio>
 4 #include<cstring>
 5 #include<algorithm>
 6 #include<cmath>
 7 using namespace std;
 8 int a[10000] ;
 9 int mod[10000] ;//mod存储判断sum%n是否出现过,如果没出现时-1,如果出现,则是此时sum对应的k值,即前k项和
10 int sum [10001];//sum存储的与描述略有不同,sum[k]=a[0]+a[1]+...+a[k-1];
11 int main()
12 {
13     int n ;
14     int i ;
15     while ( cin >> n )
16     {
17         memset ( mod , -1 , sizeof ( mod ) ) ;
18         sum[0]=0;
19         for ( i = 0 ; i < n ; i ++ )
20         {
21             cin >> a[i] ;
22         }
23         for ( i = 0 ; i < n ; i ++ )
24         {
25             sum[i+1]=sum[i]+a[i];
26             
27             if ( sum [i+1] % n == 0 )
28             {//如果是N的倍数,则输出
29                 int j ;
30                 cout<<i+1<<endl;
31                 for ( j = 0 ; j <= i ; j ++ )
32                     cout<<a[j]<<endl;
33                 break;
34             }
35             if ( mod[sum [i+1] % n]!=-1)
36             {//如果找到两个数的余数相同,则依次输出
37                 int j ;
38                 cout<<i-mod[sum [i+1] % n]<<endl;
39                 for ( j = mod[sum [i+1] % n]+1 ; j <= i ; j ++ )
40                     cout<<a[j]<<endl;
41                 break;
42             }
43             mod[sum [i+1] % n]=i;//将此时对应的余数存到mod中,值为此时的i
44         }
45     }
46     return 0;
47 }
复制代码

你可能感兴趣的:(抽屉原理的妙用)