机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)

KNN算法基础思想前面文章可以参考,这里主要讲解java和python的两种简单实现,也主要是理解简单的思想。

http://blog.csdn.net/u011067360/article/details/23941577

python版本:

这里实现一个手写识别算法,这里只简单识别0~9熟悉,在上篇文章中也展示了手写识别的应用,可以参考:机器学习与数据挖掘-logistic回归及手写识别实例的实现

输入:每个手写数字已经事先处理成32*32的二进制文本,存储为txt文件。0~9每个数字都有10个训练样本,5个测试样本。训练样本集如下图:左边是文件目录,右边是其中一个文件打开显示的结果,看着像1,这里有0~9,每个数字都有是个样本来作为训练集。


机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)_第1张图片


第一步:将每个txt文本转化为一个向量,即32*32的数组转化为1*1024的数组,这个1*1024的数组用机器学习的术语来说就是特征向量。

<span style="font-size:14px;">def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect</span>

第二步:训练样本中有10*10个图片,可以合并成一个100*1024的矩阵,每一行对应一个图片,也就是一个txt文档。

def handwritingClassTest():

    hwLabels = []
    trainingFileList = listdir('trainingDigits')  
    print trainingFileList        
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]          
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0]) 
        hwLabels.append(classNumStr)
        #print hwLabels
        #print fileNameStr   
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        #print trainingMat[i,:] 
        #print len(trainingMat[i,:])
     
    testFileList = listdir('testDigits')       
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]     
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

第三步:测试样本中有10*5个图片,同样的,对于测试图片,将其转化为1*1024的向量,然后计算它与训练样本中各个图片的“距离”(这里两个向量的距离采用欧式距离),然后对距离排序,选出较小的前k个,因为这k个样本来自训练集,是已知其代表的数字的,所以被测试图片所代表的数字就可以确定为这k个中出现次数最多的那个数字。

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    #tile(A,(m,n))   
    print dataSet
    print "----------------"
    print tile(inX, (dataSetSize,1))
    print "----------------"
    diffMat = tile(inX, (dataSetSize,1)) - dataSet      
    print diffMat
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)                  
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()            
    classCount={}                                      
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]


全部实现代码:
#-*-coding:utf-8-*-
from numpy import *
import operator
from os import listdir

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    #tile(A,(m,n))   
    print dataSet
    print "----------------"
    print tile(inX, (dataSetSize,1))
    print "----------------"
    diffMat = tile(inX, (dataSetSize,1)) - dataSet      
    print diffMat
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)                  
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()            
    classCount={}                                      
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def handwritingClassTest():

    hwLabels = []
    trainingFileList = listdir('trainingDigits')  
    print trainingFileList        
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]          
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0]) 
        hwLabels.append(classNumStr)
        #print hwLabels
        #print fileNameStr   
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        #print trainingMat[i,:] 
        #print len(trainingMat[i,:])
     
    testFileList = listdir('testDigits')       
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]     
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))
    
handwritingClassTest()    

运行结果:源码文章尾可下载

机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)_第2张图片


java版本

先看看训练集和测试集:

训练集:

机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)_第3张图片

测试集:

机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)_第4张图片


训练集最后一列代表分类(0或者1)


代码实现:

 KNN算法主体类:

package Marchinglearning.knn2;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;

/**
 * KNN算法主体类
 */
public class KNN {
	/**
	 * 设置优先级队列的比较函数,距离越大,优先级越高
	 */
	private Comparator<KNNNode> comparator = new Comparator<KNNNode>() {
		public int compare(KNNNode o1, KNNNode o2) {
			if (o1.getDistance() >= o2.getDistance()) {
				return 1;
			} else {
				return 0;
			}
		}
	};
	/**
	 * 获取K个不同的随机数
	 * @param k 随机数的个数
	 * @param max 随机数最大的范围
	 * @return 生成的随机数数组
	 */
	public List<Integer> getRandKNum(int k, int max) {
		List<Integer> rand = new ArrayList<Integer>(k);
		for (int i = 0; i < k; i++) {
			int temp = (int) (Math.random() * max);
			if (!rand.contains(temp)) {
				rand.add(temp);
			} else {
				i--;
			}
		}
		return rand;
	}
	/**
	 * 计算测试元组与训练元组之前的距离
	 * @param d1 测试元组
	 * @param d2 训练元组
	 * @return 距离值
	 */
	public double calDistance(List<Double> d1, List<Double> d2) {
		System.out.println("d1:"+d1+",d2"+d2);
		double distance = 0.00;
		for (int i = 0; i < d1.size(); i++) {
			distance += (d1.get(i) - d2.get(i)) * (d1.get(i) - d2.get(i));
		}
		return distance;
	}
	/**
	 * 执行KNN算法,获取测试元组的类别
	 * @param datas 训练数据集
	 * @param testData 测试元组
	 * @param k 设定的K值
	 * @return 测试元组的类别
	 */
	public String knn(List<List<Double>> datas, List<Double> testData, int k) {
		PriorityQueue<KNNNode> pq = new PriorityQueue<KNNNode>(k, comparator);
		List<Integer> randNum = getRandKNum(k, datas.size());
		System.out.println("randNum:"+randNum.toString());
		for (int i = 0; i < k; i++) {
			int index = randNum.get(i);
			List<Double> currData = datas.get(index);
			String c = currData.get(currData.size() - 1).toString();
			System.out.println("currData:"+currData+",c:"+c+",testData"+testData);
			//计算测试元组与训练元组之前的距离
			KNNNode node = new KNNNode(index, calDistance(testData, currData), c);
			pq.add(node);
		}
		for (int i = 0; i < datas.size(); i++) {
			List<Double> t = datas.get(i);
			System.out.println("testData:"+testData);
			System.out.println("t:"+t);
			double distance = calDistance(testData, t);
			System.out.println("distance:"+distance);
			KNNNode top = pq.peek();
			if (top.getDistance() > distance) {
				pq.remove();
				pq.add(new KNNNode(i, distance, t.get(t.size() - 1).toString()));
			}
		}
		
		return getMostClass(pq);
	}
	/**
	 * 获取所得到的k个最近邻元组的多数类
	 * @param pq 存储k个最近近邻元组的优先级队列
	 * @return 多数类的名称
	 */
	private String getMostClass(PriorityQueue<KNNNode> pq) {
		Map<String, Integer> classCount = new HashMap<String, Integer>();
		for (int i = 0; i < pq.size(); i++) {
			KNNNode node = pq.remove();
			String c = node.getC();
			if (classCount.containsKey(c)) {
				classCount.put(c, classCount.get(c) + 1);
			} else {
				classCount.put(c, 1);
			}
		}
		int maxIndex = -1;
		int maxCount = 0;
		Object[] classes = classCount.keySet().toArray();
		for (int i = 0; i < classes.length; i++) {
			if (classCount.get(classes[i]) > maxCount) {
				maxIndex = i;
				maxCount = classCount.get(classes[i]);
			}
		}
		return classes[maxIndex].toString();
	}
}

 KNN结点类,用来存储最近邻的k个元组相关的信息

package Marchinglearning.knn2;
/**
 * KNN结点类,用来存储最近邻的k个元组相关的信息
 */
public class KNNNode {
	private int index; // 元组标号
	private double distance; // 与测试元组的距离
	private String c; // 所属类别
	public KNNNode(int index, double distance, String c) {
		super();
		this.index = index;
		this.distance = distance;
		this.c = c;
	}
	
	
	public int getIndex() {
		return index;
	}
	public void setIndex(int index) {
		this.index = index;
	}
	public double getDistance() {
		return distance;
	}
	public void setDistance(double distance) {
		this.distance = distance;
	}
	public String getC() {
		return c;
	}
	public void setC(String c) {
		this.c = c;
	}
}

KNN算法测试类

package Marchinglearning.knn2;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.List;
/**
 * KNN算法测试类
 */
public class TestKNN {
	
	/**
	 * 从数据文件中读取数据
	 * @param datas 存储数据的集合对象
	 * @param path 数据文件的路径
	 */
	public void read(List<List<Double>> datas, String path){
		try {
			BufferedReader br = new BufferedReader(new FileReader(new File(path)));
			String data = br.readLine();
			List<Double> l = null;
			while (data != null) {
				String t[] = data.split(" ");
				l = new ArrayList<Double>();
				for (int i = 0; i < t.length; i++) {
					l.add(Double.parseDouble(t[i]));
				}
				datas.add(l);
				data = br.readLine();
			}
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
	
	/**
	 * 程序执行入口
	 * @param args
	 */
	public static void main(String[] args) {
		TestKNN t = new TestKNN();
		String datafile = new File("").getAbsolutePath() + File.separator +"knndata2"+File.separator + "datafile.data";
		String testfile = new File("").getAbsolutePath() + File.separator +"knndata2"+File.separator +"testfile.data";
		System.out.println("datafile:"+datafile);
		System.out.println("testfile:"+testfile);
		try {
			List<List<Double>> datas = new ArrayList<List<Double>>();
			List<List<Double>> testDatas = new ArrayList<List<Double>>();
			t.read(datas, datafile);
			t.read(testDatas, testfile);
			KNN knn = new KNN();
			for (int i = 0; i < testDatas.size(); i++) {
				List<Double> test = testDatas.get(i);
				System.out.print("测试元组: ");
				for (int j = 0; j < test.size(); j++) {
					System.out.print(test.get(j) + " ");
				}
				System.out.print("类别为: ");
				System.out.println(Math.round(Float.parseFloat((knn.knn(datas, test, 3)))));
			}
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
}

运行结果为:

机器学习与数据挖掘-K最近邻(KNN)算法的实现(java和python版)_第5张图片


资源下载:

python版本下载

java版本下载











你可能感兴趣的:(数据挖掘,机器学习)