Hdu 2829 Lawrence (DP_四边形优化|斜率优化)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829


题目大意:给定一个长度为n的序列,至多将序列分成m段,每段序列都有权值,权值为序列内两个数两两相乘之和。m<=n<=1000.


解题思路:经典的DP优化题,可以用四边形不等式优化也可以用斜率优化,我三种方法实现,两种斜率优化,一种四边形不等式,其中复杂度都为n*m,但是常熟略有差异。

    状态转移方程很好想,dp[i][j] = min(dp[i][j],dp[k][j-1]+cost[k+1][j])(1<=k<i),这种方程普通写法是n*n*m,当n为1000时运算量为10亿级别,必须优化。

    

     第一种:四边形不等式优化,这种方法是最简单的,主要是减少枚举k的次数。cost[i][j]是某段区间的权值,当区间变大,权值也随之变大,区间变小,权值也随之变小,此时就可以用四边形不等式优化。

     我们设s[i][j]为dp[i][j]的前导状态,即dp[i][j] = dp[s[i][j][j-1] + cost[s[i][j]+1][j].之后我们枚举k的时候只要枚举s[i][j-1]<=k<=s[i+1][j],此时j必须从小到大遍历,i必须从大到小。

     用这种方法我的代码跑了140ms。


    第二种:斜率优化.其实是借鉴大牛大思路,Here,我只是抛砖引玉而已。这种方法的dp和suma数组必须为64位整数,因为平方和会超过32位整数。

    用这种方法我的代码跑了350ms。


    第三种:斜率优化.其实是借鉴大牛大思路,Here,我只是抛砖引玉而已。其实这题可以作为模板题,斜率优化大抵如此吧。

    用这种方法我的代码跑了109ms。


测试数据:

Input:
4 1
4 5 1 2
4 2
4 5 1 2
5 3
1 2 1 2 1
6 4
7 5 3 6 8 9
10 3
1 4 2 7 5 6 8 5 6 9

OutPut:
17
2
92
15
187


C艹代码:

//四边形不等式
#include <stdio.h>
#include <string.h>
#define MAX 1100
#define INF (1<<30)


int n,m,sum[MAX],cost[MAX][MAX];
int arr[MAX],dp[MAX][MAX],s[MAX][MAX];


void Initial() {

    int i, j, k;


    for (i = 1; i <= n; ++i)
        for (j = 1; j <= n; ++j)
            if (j < i) cost[i][j] = 0;
            else cost[i][j] = cost[i][j - 1] + arr[j] * (sum[j - 1] - sum[i - 1]);
    for (i = 0; i <= n; ++i) {

        dp[i][0] = cost[1][i];
        s[i][0] = 0,s[n+1][i] = n;
    }
}
int Solve_DP() {

    int i,j,k;


    for (j = 1; j <= m; ++j)
        for (i = n; i >= 1; --i) {

            dp[i][j] = INF;
            for (k = s[i][j-1] ; k <= s[i+1][j]; ++k)
                if (dp[k][j-1] + cost[k+1][i] < dp[i][j]) {

                    s[i][j] = k;
                    dp[i][j] = dp[k][j-1] + cost[k+1][i];
                }
        }


    return dp[n][m];
}


int main()
{
    int i,j,k;


    while (scanf("%d%d",&n,&m),n+m) {

        for (i = 1; i <= n; ++i)
            scanf("%d",&arr[i]),sum[i] = arr[i] + sum[i-1];


        Initial();
        int ans = Solve_DP();
        printf("%I64d\n",ans);
    }
}

//sum[i] = arr[1] + .. arr[i]^2
//sum2[i] = arr[1]^2 + .. arr[i]^2;
//dp[i][j] = min{dp[k][j-1] -sum[i] * sum[k] + (suma[k] - sum[k]^2)/2 + (sum[k]^2 - suma[k])/2};
//斜率优化二
#include <stdio.h>
#include <string.h>
#define MAX 1100
#define INF (1<<30)
#define int64 __int64//long long


struct point {

    int64 x,y;
}pot[MAX];
int head,tail,qu[MAX];
int n,m,arr[MAX];
int64 sum[MAX],sum2[MAX],dp[MAX][MAX];


void Initial() {

    for (int i = 1; i <= n; ++i) {

        sum[i] = arr[i] + sum[i-1];
        sum2[i] = arr[i] * arr[i] + sum2[i-1];
        dp[i][0] = dp[i-1][0] + arr[i] * sum[i-1];
    }
}
int CheckIt(point p0,point p1,point p2) {

    return (p0.x-p1.x) * (p0.y-p2.y) - (p0.y-p1.y) * (p0.x-p2.x) <= 0;
}
int NotBest(point p0,point p1,int k) {

    return p0.y - k * p0.x > p1.y - k * p1.x;
}
int Solve_DP() {

    int i,j,k;


    for (j = 1; j <= m; ++j) {

        head = 0,tail = 0;
        qu[tail] = 0;
        for (i = j + 1; i <= n; ++i) {

            pot[i].x = sum[i-1];
            pot[i].y = dp[i-1][j-1] + (sum[i-1] * sum[i-1] + sum2[i-1]) / 2;
            while (head <= tail - 1 &&
                    CheckIt(pot[qu[tail-1]],pot[qu[tail]],pot[i])) tail--;


            qu[++tail] = i;
            while (head + 1 <= tail &&
                    NotBest(pot[qu[head]],pot[qu[head+1]],sum[i])) head++;
            k = qu[head];
            //dp[i][j] = y - k * x + c
            dp[i][j] = pot[k].y - sum[i] * pot[k].x + (sum[i] * sum[i] - sum2[i]) / 2;
        }
    }


    return dp[n][m];
}
int GetInt() {

    char ch = ' ';
    while (ch < '0' || ch > '9')
        ch = getchar();
    int x = 0;
    while (ch >= '0' && ch <= '9')
        x = x * 10 + ch - '0',ch = getchar();
    return x;
}


int main()
{
    int i,j,k;


    while (scanf("%d%d",&n,&m),n+m) {

        for (i = 1; i <= n; ++i)
            scanf("%d",&arr[i]),sum[i] = arr[i] + sum[i-1];


        Initial();
        int ans = Solve_DP();
        printf("%d\n",ans);
    }
}


//cost[k+1][i]=cost[1][i]-cost[1][k]-sum[k]*(sum[i]-sum[k])
//dp[i][j]=dp[k][j-1]+cost[1][i]-cost[1][k]-sum[k]*(sum[i]-sum[k])
//        =dp[k][j-1]-cost[1][k]+sum[k]^2-sum[i]*sum[k]+cost[1][i]
//斜率优化一 
#include <stdio.h>
#include <string.h>
#define MAX 1100
#define INF (1<<30)


struct point {

    int x,y;
}pot[MAX];
int head,tail,qu[MAX];
int n,m,arr[MAX],cost[MAX];
int sum[MAX],sum2[MAX],dp[MAX][MAX];


void Initial() {

    for (int i = 1; i <= n; ++i) {

        sum[i] = arr[i] + sum[i-1];
        cost[i] = cost[i-1] + arr[i] * sum[i-1];
        dp[i][0] = cost[i];
    }
}
int CheckIt(point p0,point p1,point p2) {

    return (p0.x-p1.x) * (p0.y-p2.y) - (p0.y-p1.y) * (p0.x-p2.x) <= 0;
}
int NotBest(point p0,point p1,int k) {

    return p0.y - k * p0.x > p1.y - k * p1.x;
}
int Solve_DP() {

    int i,j,k;


    for (j = 1; j <= m; ++j) {

        head = 0,tail = 0;
        qu[tail] = 0;
        for (i = j + 1; i <= n; ++i) {

            pot[i].x = sum[i-1];
            pot[i].y = dp[i-1][j-1] - cost[i-1] + sum[i-1] * sum[i-1];
            while (head <= tail - 1 &&
                    CheckIt(pot[qu[tail-1]],pot[qu[tail]],pot[i])) tail--;


            qu[++tail] = i;
            while (head + 1 <= tail &&
                    NotBest(pot[qu[head]],pot[qu[head+1]],sum[i])) head++;
            k = qu[head];
            //dp[i][j] = y - k * x + c
            dp[i][j] = pot[k].y - sum[i] * pot[k].x + cost[i];
        }
    }


    return dp[n][m];
}


int main()
{
    int i,j,k;


    while (scanf("%d%d",&n,&m),n+m) {

        for (i = 1; i <= n; ++i)
            scanf("%d",&arr[i]),sum[i] = arr[i] + sum[i-1];


        Initial();
        int ans = Solve_DP();
        printf("%d\n",ans);
    }
}


本文ZeroClock原创,但可以转载,因为我们是兄弟。

你可能感兴趣的:(Hdu 2829 Lawrence (DP_四边形优化|斜率优化))