802.11技术解析

其实,802.11a/b/g/n等术语是用来描述无线网卡兼容相关无线通讯协议的指标,它直接影响到你选购的笔记本电脑在不同无线网络中兼容性与速率。802.11是无线网络协议家族其中的一个标记名称,也是无线网络协议中最元老协议,随着无线 网络发展,在802.11基础上又发展出了802.11b、802.11a、802.11g和802.11n等,这些协议成员具体工作频段及速率如下:

    协议       频率         速率
    802.11   2.4GHz      2Mbps
    802.11a  5GHz        54Mbps
    802.11b  2.4GHz      11Mbps
    802.11g  2.4GHz      54Mbps
    802.11n  2.4或5GHz   540Mbps

    802.11协议伴随扩展协议的发展和普及,其已经逐渐淘汰,市面上很少看到支持802.11协议笔记本电脑。802.11b是继802.11协议后形成的无线网络协议,盛行一时,但是它仅仅具备11Mbps带宽,不能满足很多局域网内特殊业务要求。之后,出现802.11a,这个协议支持速率高达54Mbps,可以满足多数业务需要,但是其工作在5GHz,与802.11和802.11b在硬件上得不到兼容,很难抢占802.11b已有客户群,没有得到普及。人们为了保持802.11a高速率和802.11b兼容性,于是在802.11b基础上经过优化,编制出802.11g协议,它即保持54Mbps速率,又兼容802.11b 2.4GHz工作频段,对802.11b客户群有着良好硬件兼容性,成为了主流。在802.11g协议之后,人们又提高了无线网络速率和更好频段兼容性协议——802.11n,因为它属于出世不久的无线网络协议,尚没有得到多数无线网络设备支持,所以在市场上很少见到。

 

在WLAN网络广泛应用的同时,802.11技术也没有停止发展的脚步,2009年802.11n协议正式标准化,再一次实现了物理速率的提升,最高物理速率可以达到了300Mbps。而且,802.11n的A-MPDU(报文聚合)功能充分提高空间媒介的信道利用率,同时带来了WLAN网络的信道承载性能的成倍提升。

未来随着新的802.11n芯片和技术的发展,450Mbps物理速率的设备也将被普遍应用,WLAN网络又将迎来新一轮的腾飞。

一、 物理速率的提升

从宏观角度,802.11协议可以分为两个主要部分:链路层业务和物理层传输。链路层业务主要制定了WLAN链路协商的规则,以及针对WLAN接入服务而设计的系列功能,例如报文重传和确认、重复报文检测、密钥协商、加密保护、漫游等等。而物理层传输则实现WLAN设备之间的能够完成信号的发送和接收,并致力于不断提高数据传输的物理速率。下面给出802.11协议族所逐步实现的物理速率:

· 1999年,802.11的基础协议完成了WLAN的基本架构定义,并定义了两种调制模式和速率,为WLAN提供了1Mbps和2Mbps的物理接入速率;

· 1999年,802.11b协议直接致力于物理速率的提升,在802.11的基础上提出了“High Rate”的概念,通过调试模式CCK,将WLAN的最大物理接入速率从2Mbps直接提升到11Mbps;

· 1999年,802.11a的问世一方面跳出了原来2.4GHz频段的限制为WLAN应用争取了更多的空间媒介资源(5GHz的三段频点,可以提供多达13个不重叠的工作信道),另外一方面则通过OFDM调制模式又一次将物理速率提升到了54Mbps。如果单单从数据的传输速率角度,该物理速率已经是一个骄人的成绩,在当时一定程度上可以和以太网网络进行比较和抗衡;

· 2003年,OFDM调制模式引入到2.4GHz推出了802.11g协议,该协议在802.11b的基础上扩充支持了OFDM调制模式,使得WLAN在2.4GHz上也能够实现54Mbps的物理传输速率。802.11g并没有为WLAN协议的物理速率的提升,而只是对于已有技术的扩展应用;

· 2009年,长达10年的沉默后802.11n协议的推出重新对WLAN物理速率进行了一次洗牌,从调制模式开始、引入了MIMO技术、实现了2个信道的捆绑使用,甚至对信号间隔调整,将WLAN的物理传输速率推到了300Mbps,特别在3条流的基础上可以达到450Mbps的物理速率。

通过图1可以看出,802.11n时代实现了WLAN的高速无线接入,从物理速率上已经超出了其他无线网络,为WLAN无线网络的广泛应用带来了无限的前景和希望,为WLAN的长远发展奠定了坚实的基础。

802.11技术解析_第1张图片

图1 802.11的速率增长示意

到底哪些技术促成了此次802.11物理传输速率质的飞跃?

首先,通过调制方式的变化,将基本的物理速率从802.11a和802.11g的最高54Mbps提高到了65Mbps,该速率也是单条流20Mhz频宽默认情况下的最大物理速率。图2为802.11n-2009协议的一个物理速率,其中“800ns GI”对应的一列的物理速率就是802.11n协议调制模式定义的基本速率:

802.11技术解析_第2张图片

图2 802.11的速率增长示意

其次,802.11n提出了MIMO技术,通过多条流同时发送数据,实现了相同时间内发送成倍的数据,最终将802.11n的物理传输速率成倍的提升。例如,在20Mhz频宽采用800ns GI条件下,两条流发送可以将物理速率从65Mbps提升到130Mbps,三条流可以将物理速率从65Mbps提升到195Mbps;

再次,传统802.11a/g使用的频宽为20MHz,而802.11n协议可以支持将相邻两个频宽绑定为40MHz来一起使用。就是40MHz绑定技术有效地提高所用频谱的宽度,将原来的52个有效子载波扩展到了108个,将802.11的物理速率提升了2.077倍左右。例如,在一条流800ns GI条件下,信道捆绑可以将物理速率从65Mbps提升到135Mbps;

最后,通过深层里的挖掘,可以将物理发送信号之间的GI从800ns调整到400ns,802.11n又为物理速率找到了大约1.11倍的提升。

图3给出了802.11n常见的物理速率(指定条件下系统提供的最高物理速率),并给出几个基本物理速率详细描述和解释:

802.11技术解析_第3张图片

图3 802.11n常见物理速率及相关参数

· 65Mbps:为20Mhz模式下单条流的最大物理发送速率(没有启动short GI),一些早期的无线网卡可能都是一条流的11gn网卡,此类网卡数据发送时使用一条流,所以能够达到的最大物理速率为65Mbps;

· 130Mbps:目前主流的11gn的物理速率,由于11gn不重叠信道只有3个,所以通常采用20Mhz模式而且不应用short GI特性,此时基本的无线客户端使用两条流进行数据发送,可以达到最大物理速率为130Mbps;

· 300Mbps:11an不重叠信道相对11gn比较多,所以在11an模式下可以选择采用40Mhz模式并可以启动short GI功能,这样比较主流的11n客户端使用两条流发送数据,实现了300Mbps的最大物理速率。

二、 WLAN接入业务应用感受

802.11n技术将WLAN网络带到了一个高速时代,一个11N的网络的理论性能整体要高于同等条件下11G的WLAN网络,实际的应用效果肯定会得到一定的改善。

通过对常用的网络工具,及对校园网流量的抓包分析发现:在实际的网络流量中大部分的报文并不是我们期待的1500Bytes的报文,而偏偏都是小于100Bytes的小报文,而100字节报文的性能要比1500bytes字节的报文的性能差得远。通过多次分析发现实际网络中的大小报文可以参考下面的经验(如图4所示):

报文统计大小

88Bytes

512Bytes

1538Bytes

说明

报文大小<88

88<报文大小<1024

1024<报文大小

比例

60%

12%

28%

图4 校园网报文大小分布情况

在这样的网络应用条件下,一个11a或者11g的WLAN网络中一个信道,即使在干净的环境条件下,也只能够支撑的如下数据传输性能(如图5所示):

802.11b

802.11g

802.11a

物理层最大速率

11Mbps

54Mbps

54Mbps

理论最大传输速率(1538Byte报文)

7.9Mbps

35Mbps

35Mbps

88Bytes报文性能

1.5Mbps

4.5Mbps

4.5Mbps

512Bytes报文性能

5Mbps

21Mbps

21Mbps

综合实际应用性能(信道性能)

3.71Mbps

15.02Mbps

15.02Mbps

图5 802.11实际性能情况

11N网络的A-MPDU报文聚合将WLAN的性能带到了一个新的高度(参见上一期《报文聚合对802.11n性能的影响》),整体的应用性能应该会有非常大的改善。但是,所有性能的分析和测试都是在尽可能发送大的数据报文的前提下获取的,只能在一定程度上体现出对业务应用的支持能力。

为了更好的理解网络的性能,可以将11N网络中的A-MPDU报文聚合的情况进行分类统计。针对11GN的网络(20MHz应用)完成如下三种网络应用情况下的信道实际应用性能,整体表现而言,11N技术在实际应用中相对于11G可能带来WLAN信道性能2-3倍的提升(如图6所示)

纯11N网络

混合11N网络(11g:11N = 1:1)

混合11N网络(11g:11N = 2:8)

物理层最大速率

145M

145M/54M

145M/54M

综合实际应用性能(信道性能)

55.2M

31.9M

44.8M

按照80%干扰计算应用性能

45.6M

25.5M

35.8M

图6 三种网络应用情况下的实际性能

三、 影响和制约WLAN网络实际应用的因素

但是,无论速率和性能如何发展,802.11自身的特点极大的制约和影响着整个网络的实际应用,使得实际的感受并不能达到理论的期望。

例如,在一个固定的位置,信道媒介的空间资源就是100%,所有的WLAN设备、任何的WLAN报文都会消耗这个资源,非业务报文消耗的信道越多,整体的网络的性能就会下降,在一定程度上也会影响到网络的稳定运行:

· 任何的一台AP如果要提供WLAN接入服务,都需要定期发送Beacon报文,默认情况下每一个AP的一个接入服务一秒钟需要发送10个beacon报文;

· 无线客户端无论是否接入到WLAN网络中,都会定期发送probe request报文请求周围的无线服务;

· 通常情况下,AP收到probe request请求报文都需要回应对应的probe response报文,而且如果一个AP有多个无线接入服务则需要发送多个probe response报文;

· 而所有的这些管理报文,都需要使用强制速率发送,而且通常需要使用最低物理速率发送;

· 如果一个环境中AP数量比较多,无线客户端数量非常多,这些非业务的管理报文就可能会消耗5%-20%的信道资源。

再如, WLAN网络为无线客户端提供了随时随地的便捷,同时也必须承接不同信号强度的客户端的接入。WLAN协议认为,低速率发送报文时携带的信息要比高速率少,所以发送成功的概率就会高。所以当无线客户端的信号强度比较低时,数据报文的发送通常会使用较低的物理速率发送,这样会使得整个WLAN网络的性能下降。

以下是一个校园网络中的无线客户端的情况分析,该网络中有30%的用户的信号强度低于25,而AP有一半的报文发送的物理速率达不到最大物理速率的60%,按照粗略评估由于这个因素带来的性能的降低超过40%。

802.11技术解析_第4张图片

802.11技术解析_第5张图片

图7 校园网无线客户端情况分析

在WLAN网络的部署、优化和分析中,可以确定以下的环境和网络等因素都会制约着整个WLAN网络的应用性能和实际感受:

· 在实际网络环境中,可能存在多个WLAN网络,所有的这些网络实际上共享一个信道资源和性能;

· 实际应用中,一个信道中众多的WLAN设备会造成冲突避免效果减弱,而有可能演变成干扰和冲突,导致报文的重传和丢弃,造成无谓的信道资源消耗,降低整个WLAN网络的性能;

· AP设备和无线终端随意的位置会带来众多的隐藏节点,同样会带来冲突和干扰,造成信道资源消耗,降低网络性能;

· 众多的无线终端和AP,为了完成WLAN服务的发现,会带来信道中出现大量的管理报文,这些报文通常按照较低的物理速率发送,需要消耗信道资源;

· 网络中始终充斥着大量的广播报文,所有的广播报文通常按照较低的物理速率发送,需要消耗信道资源;

· WLAN的物理速率不是固定的,而是一个速率集合,一个报文可以使用这个速率集合的任何速率发送,根据经验,,一个比较好的网络中,信号强度非常好的客户端若能够有60%之上的报文采用高速率发送已经是非常理想;

· 默认大部分的AP设备不会控制WLAN网络信号覆盖边缘地带的客户端接入,这些客户端的信号强度非常低,会造成大部分甚至超过70%的报文都会按照较低的物理速率进行发送。

四、 结束语

802.11技术的发展整体提升了WLAN网络的应用性能,会极大地提升实际业务应用的感受。但是还需要谨慎的理解到实际WLAN网络应用的复杂性,各种意想不到的环境、因素和干扰同时作用和影响,可能使得网络的实际应用效果和理论性能存在较大的偏差,而且这些原因往往扑朔迷离、难于分析和量化。所以,在实际的WLAN网络接入的应用中,需要根据业务的需求和流量的变化而长期不断地进行优化。

 

 

无线局域网技术IEEE 802.11技术解析

目前有多种无线网络技术,如我们使用的手机就是一种应用范围很广泛的无线网络技术,本文中我们只介绍数据通讯领域的IEEE802.11技术。下图就是不同无线技术的适用范围示意图:

一、IEEE802.11无线局域网标准介绍

1997年IEEE802.11标准的制定是无线局域网发展的里程碑,它是由大量的局域网以及计算机专家审定通过的标准。IEEE802.11标准定义了单一的MAC层和多样的物理层,其物理层标准主要有IEEE802.11b,a,g和n。

1.IEEE802.11b

1999年9月正式通过的IEEE802.11b标准是IEEE802.11协议标准的扩展。它可以支持最高11Mbps的数据速率,运行在2.4GHz的ISM频段上,采用的调制技术是CCK。但是随着用户不断增长的对数据速率的要求,11Mbps的最高传输速率就不能满足要求了。802.11b标准定义的数据传输速率较低,但是由于其设备元器件的价格较低,所以有大量的用户群体使用。可以说所有的WiFI技术无线网卡都支持这项技术,所以这项标准的兼容性是很高的。

2.IEEE802.11a

IEEE802.11a工作5GHz频段上,使用OFDM调制技术可支持54Mbps的传输速率。802.11a与802.11b两个标准都存在着各自的优缺点,802.11b的优势在于价格低廉,但速率较低(最高11Mbps);而802.11a优势在于传输速率快(最高54Mbps)且受干扰少,但价格相对较高。另外,11a与11b工作在不同的频段上,不能工作在同一AP的网络里,因此11a与11b互不兼容。由于802.11a设备造价的因素,以及高频方式下面覆盖范围相对小的原因。造成使用此项技术的用户群体要小于2.4GHz频道的用户。

3.IEEE802.11g

为了802.11b数据传输率低,802.11a兼容性以及造价高的问题,IEEE于2003年7月批准了802.11g标准,新的标准终于浮出水面成为人们对无线局域网关注的焦点。IEEE802.11工作组开始定义新的物理层标准IEEE802.11g。该草案与以前的802.11协议标准相比有以下两个特点:其在2.4G频段使用OFDM调制技术,使数据传输速率提高到54Mbps以上;IEEE802.11g标准能够与802.11b的WIFI系统互相连通,共存在同一AP的网络里,保障了后向兼容性。这样原有的WLAN系统可以平滑的向高速无线局域网过渡,延长了IEEE802.11b产品的使用寿命,降低用户的投资。

802.11g同802.11b一样工作在2.4-2.4835GHz频段的工作频段带宽总计为83.5MHz,将83.5MHz的频带划分成14个子频道,每个频道带宽为22MHz。子频道分配如下图所示:

在多个子频道同时工作的情况下,为保证频道之间不相互干扰,要求两个频道的中心频率间隔不能低于

25MHz。因此从上图可以看出,在一个蜂窝区(Cell)内,直序扩频技术最多可以提供3个不重叠的频道同时工作,在802.11g模式下面提供高达54Mbps的吞吐量。

4.IEEE802.11n

目前以太网有线IP网络的速率已经达到万兆的级别(10Gbps),54Mbps的无线网络速率显然已经不能满足要求了。因此,IEEE已经开始指定新的无线网络传输技术标准802.11n。

IEEE802.11n计划将WLAN的传输速率从802.11a和802.11g的54Mbps增加最高速率可达500Mbps,这使得802.11n成为802.11b、802.11a、802.11g之后的另一场重头戏。和以往地802.11标准不同,802.11n协议为双频工作模式(包含2.4GHz和5GHz两个工作频段)。这样11n保障了与以往的802.11ab,g标准兼容。

在传输速率方面,802.11n可以将WLAN的传输速率由目前802.11a及802.11g提供的54Mbps提高到108Mbps,甚至高达500Mbps。这得益于将MIMO(多入多出)与OFDM(正交频分复用)技术相结合而应用的MIMOOFDM技术,这个技术不但提高了无线传输质量,也使传输速率得到极大提升。

简单地说,N根发射天线向N根接收天线发送数据,每根接收天线检测一个唯一的流,结果是吞吐量增加了N-1倍。"N×N"数字分别代表参与基于MIMO的和空间复用传输的发射(Tx)天线的数量和接收(Rx)天线的数量。当你有更多的接收天线时,你得到了所谓的'组合增益'。换句话说,你收到了相同信号的更多的副本,以及……更大的信噪比,而这增加了信号强度。

Netgear公司在全球范围内率先推出了基于802.11n技术的无线产品――RangeMaxNext系列产品。RangeMaxNext基于802.11n标准草案,它能扩展无线网络的范围、并且提供最高300Mbps的稳定传输。这一基于下一代无线局域网标准的Next系列产品采用高级MIMO(多进多出)技术,提供令人难以置信的大范围覆盖和高速传输,并且具有与采用TopDog技术的其他产品实现高速无线互操作的特性,这种实现尚属首。次

 

 

你可能感兴趣的:(工作,网络,网络应用,网络协议,扩展,产品)