- 【深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
阿_旭
AI应用软件开发实战深度学习实战深度学习python行人检测行人追踪过线计数
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 【CV论文精读】Adaptive Fusion of Multi-Scale YOLO for Pedestrian Detection基于多尺度自适应融合YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO计算机视觉人工智能
AdaptiveFusionofMulti-ScaleYOLOforPedestrianDetection0.论文摘要和作者信息摘要虽然行人检测技术在不断改进,但由于不同规模的行人和遮挡行人模式的不确定性和多样性,行人检测仍然具有挑战性。本研究遵循单次目标检测的通用框架,提出了一种分而治之的方法来解决上述问题。该模型引入了一个分割函数,可以将一幅图像中没有重叠的行人分割成两个子图像。通过使用网络架
- HOG特征
ce0b74704937
HOG特征是在文章《HistogramsofOrientedGradientsforHumanDetection》中提出,看文章标题可知,该文章是为了行人检测提出的,不过后来也用于其它方向,比如特征点检测等。该文中行人检测大概分为以下几步:输入图像(行人的图像)采用Gamma矫正法对输入图像进行颜色空间的标准化;目的是调节图像的对比度,降低图像局部的阴影和光照所造成的影响,同时可以抑制噪声。(原文
- 【CV论文精读】Pedestrian Detection Based on YOLO Network Model 基于YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO深度学习计算机视觉
【CV论文精读】PedestrianDetectionBasedonYOLONetworkModel0.论文摘要和作者信息摘要——经过深度网络后,会有一些行人信息的丢失,会造成梯度的消失,造成行人检测不准确。本文改进了YOLO算法的网络结构,提出了一种新的网络结构YOLO-R。首先,在原有YOLO网络的基础上增加了三个直通层。直通层由路由层和重组层组成。其作用是将浅层行人特征连接到深层行人特征,并
- 跨模态行人重识别综述 - 计算机视觉
小小猿D
笔记深度学习
跨模态行人重识别综述-计算机视觉0引言近年来,随着智能监控领域的不断发展,单纯凭借传统的人力已经很难在对复杂的监控场景做出完善详尽的处理。作为一项在大型非重叠视角多摄像机网络获取到的海量视频画面序列里找到目标行人的任务,行人重识别(PersonRe-Identification)可以被看作是多摄像头的行人检索问题。它建立在行人检测的基础之上,捕捉获取同一目标个体在不同非重叠摄像头中分布位置信息,推
- PaddleDetection学习2——使用Paddle-Lite在 Android 上实现行人检测
waf13916
paddleandroid
使用Paddle-Lite在Android上实现行人检测1.环境准备2.准备模型2.1下载模型2.2模型优化3.部署模型3.1目标检测C++代码Pipeline.hPipeline.cpppreprocess_op.hpreprocess_op.cc3.2修改配置文件3.4部署模型到移动端1.环境准备参考前一篇
- YOLOV5s行人识别改进 引入CoT模块及SIOU损失函数
deleteeee
YOLO人工智能计算机视觉神经网络python目标检测视觉检测
1.项目背景及意义近年来,深度学习算法不断取得了突破性进展,这也推动了人工智能技术的不断进步。机器视觉作为其中的重要一环,在不同领域也焕发出了强烈的生机。行人目标检测是机器视觉的一项重要课题,早就已经引起了国内外学者广泛的研究。在现实生活中,行人检测在车站、商场等场所的人流量检测、汽车的自动驾驶技术、智能交通、健身房辅助教学、电影拍摄中动作捕捉等多种场景中被广泛应用。然而,行人检测通常伴随着遮挡,
- 计算机设计大赛 交通目标检测-行人车辆检测流量计数 - 计算机设计大赛
iuerfee
python
文章目录0前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后0前言优质竞赛项目系列,今天要分享的是毕业设计交通目标检测-行人车辆检测流量计数该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分
- YOLOV5单目测距+车辆检测+车道线检测+行人检测(教程-代码)
毕设阿力
YOLO目标跟踪人工智能目标检测
YOLOv5是一种高效的目标检测算法,结合其在单目测距、车辆检测、车道线检测和行人检测等领域的应用,可以实现多个重要任务的精确识别和定位。首先,YOLOv5可以用于单目测距。通过分析图像中的目标位置和尺寸信息,结合相机参数和几何关系,可以推断出目标与相机之间的距离。这对于智能驾驶、机器人导航等领域至关重要,可以帮助车辆或机器人感知周围环境的远近,并做出相应的决策。其次,YOLOv5可以用于车辆检测
- 大创项目推荐 目标检测-行人车辆检测流量计数
laafeer
python
文章目录前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后前言优质竞赛项目系列,今天要分享的是行人车辆目标检测计数系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1.目
- 使用飞浆训练目标检测模型
无忧秘书智脑
深度学习机器学习人工智能
参考链接:PP-PicoDet算法训练行人检测模型-CSDN博客文章浏览阅读306次。PP-PicoDet模型特点:方案选择PP-PicoDet轻量化模型,主要看中PP-PicoDet体积小、速度快、精度较高的优势,非常适合本项目的部署环境和性能要求。同时,飞桨提供的预训练模型也可以最大程度上提升模型的收敛速度和精度。https://blog.csdn.net/qq_45437316/articl
- LNTON人形检测、行人检测工具,支持图片、RTSP实时流、mp4文件中的行人或者人形检测,实用工具,亲测可用!
xiejiashu
视频人工智能行人检测人形检测人物监测检测人的算法羚通算法
简介LNTON_PID是一个行人检测工具,能够对图像、视频、文件夹中的多个文件或RTSP实时流进行行人检测,并支持自定义输出结果和行人区域位置的保存。该工具提供了灵活的参数配置选项以适应各种应用场景。快速开始-命令行参数格式(Linux/Unix环境)./pid_tools_gensamplesINPUT_PATHOUT_RESULT_DIR[DEFAULT:results]OUT_PATCH_D
- 智慧工地下烟火检测报警系统 建筑工地火灾监控系统
豌豆云
烟火自动识别预警和监管系统
智慧工地下烟火检测报警系统建筑工地火灾监控系统基于智能识别的人员密集场所安防预警系统或许能够帮到你。该系统利用监控系统结合模式识别,对现场视频数据进行深度挖掘,突破基于复杂背景下的烟火识别、动态场景下非配合人脸识别以及基于行人检测的越界识别等关键技术。烟感防灾报警系统,在施工现场加工区、材料堆放区、易发生火灾隐患区域安装烟感探测器,监测现场烟雾浓度。探测器内置芯片可实时上传监测数据至“智慧工地监管
- 目标检测数据集 - 人脸检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人脸检测人脸检测数据集深度学习人工智能数据集
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 目标检测数据集 - 行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO行人检测行人检测数据集AI训练数据集深度学习labelimg
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 基于YOLOv5的行人检测系统
TechMasterPlus
深度学习#目标检测游戏音视频深度学习人工智能
若需要完整工程源代码,请私信作者目标检测在计算机视觉领域中的重要性,特别是在人群流量监测方面的应用。其中,YOLO(YouOnlyLookOnce)系列算法在目标检测领域取得了显著的进展,从YOLO到YOLOv5的发展历程表明其在算法性能上的不断优化。文中提到了基于YOLOv5设计的人口密度检测系统,该系统通过深度学习算法对人群进行检测和计数,主要应用于商场、路口等需要控制人流的场所。系统通过YO
- 无人驾驶卡尔曼滤波
meteor,across T sky
Apollo机器学习人工智能
无人驾驶卡尔曼滤波(行人检测)xk=axk−1+wkx_k=ax_{k-1}+w_kxk=axk−1+wkwkw_kwk:过程噪声状态估计估计飞行器状态(高度)xk=zk−vkx_k=z_k-v_kxk=zk−vk卡尔曼滤波通过同时考虑上一状态值和当前的测量值来获得对当前状态值的估计,对状态xxx的估计:x^\hat{x}x^x^k=x^k−1+gk(zk−x^k−1)\hat{x}_k=\hat
- 大创项目推荐 深度学习实现行人重识别 - python opencv yolo Reid
laafeer
python
文章目录0前言1课题背景2效果展示3行人检测4行人重识别5其他工具6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的行人重识别算法研究与实现**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate
- 目标检测数据集 - 夜间行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人工智能夜间行人检测低光行人检测遮挡行人检测行人检测
数据集介绍:夜间、低光行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如夜间街景行人、夜间道路行人、夜间遮挡行人、夜间严重遮挡行人数据;适用实际项目应用:公共场所监控场景下夜间行人检测项目,以及作为监控场景通用行人检测数据集夜间场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式
- 基于yolov2深度学习网络的车辆行人检测算法matlab仿真
简简单单做算法
MATLAB算法开发#深度学习YOLO深度学习人工智能yolov2车辆行人检测
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本MATLAB2022a3.部分核心程序..........................................................loadyolov2.mat%加载训练好的目标检测器img_size=[224,224];imgPath=
- C# OpenCvSharp DNN FreeYOLO 密集行人检测
天天代码码天天
C#人工智能实践dnn人工智能神经网络YOLO目标检测计算机视觉c#
目录效果模型信息项目代码下载C#OpenCvSharpDNNFreeYOLO密集行人检测效果模型信息Inputs-------------------------name:inputtensor:Float[1,3,192,320]---------------------------------------------------------------Outputs--------------
- 一些想法:关于行人检测与重识别
baidu_huihui
人工智能计算机视觉
本文主要是介绍我们录用于ECCV'18的一个工作:PersonSearchviaAMask-guidedTwo-streamCNNModel.这篇文章着眼于PersonSearch这个任务,即同时考虑行人检测(PedestrianDetection)与行人重识别(PersonRe-identification),简单探讨了一下行人检测与行人重识别这两个子任务之间的关联性,并尝试利用全景图像中的背景
- 智能交通技术与数据集大观:揭秘趋动云的无尽能量,引领AI发展的GPU算力及相关资源
virtaitech
人工智能gpu算力
智能交通是一种先进的交通系统,其核心目标在于通过实时数据的采集、分析以及智能决策,全面提升城市交通的效率、安全性和便捷性。该系统涵盖多项关键技术,包括行人检测、车辆检测、智能交通信号控制、智能导航和路径规划、以及安全监控等。行人检测:智能交通系统利用计算机视觉技术,通过摄像头、激光雷达等传感器对行人进行实时监测和识别。深度学习算法在处理多姿态和遮挡等复杂场景时,能够高效地检测行人的存在、位置和运动
- YOLO算法改进7【中阶改进篇】:主干网络C3替换为轻量化网络MobileNetV3
梦在黎明破晓时啊
YOLOV5中阶改进篇YOLO
解决问题:YOLOv5主干特征提取网络采用C3结构,带来较大的参数量,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,或者说响应速度要快,想象一下自动驾驶汽车的行人检测系统如果速度很慢会发生什么可怕的事情。所以,研究小而高效的CNN模型在这些场景至关重要,至少目前是这样,尽管未来硬
- Deep learning-based small object detection: A survey(2023)
怎么全是重名
论文笔记深度学习目标检测人工智能
文章目录AbstractIntroductionContributionGenericSODalgorithms提高输入特征的分辨率(MostImportant)Methods尺度感知训练Methods融合上下文信息Methods数据增强Methods其他策略Methods关键的SOD任务小人脸检测Methods小型行人检测Methods航拍图像中的SODMethodsEvaluationofSO
- 36从传统算法到深度学习:目标检测入门实战 --行人检测
Jachin111
行人检测基本流程在实验1到实验3中我们分别学习了滑动窗口、图像金字塔、方向梯度直方图。本节实验我们将结合这些方法来构建一个传统的行人检测算法。简单来说行人检测就是在提供的图像中,我们想要计算机分辨出哪些是人并且用矩形框标记出人出现在图片中的哪些位置。下图左上角图片中有一个人,如果我们想要用传统的目标检测方法检测到这个人的话,一般分为下面几个步骤。使用图像金字塔将图片按一定缩放比例生成不同尺寸图片(
- 深度学习模型压缩与加速:深度压缩技术
RRRRRoyal
深度学习人工智能
深度学习模型压缩与加速:深度压缩技术引言深度学习已广泛应用于移动应用和实时检测任务,例如在自动驾驶车辆中的行人检测。在这些应用中,对于推理速度和模型大小有着极高的要求。深度压缩(DeepCompression)技术旨在减小深度学习模型的大小并加速模型推理,特别适用于对延迟敏感的应用场景。下面我们将详细介绍深度压缩技术及其在实际硬件上的性能。模型压缩与量化深度压缩技术通过权重剪枝、量化等方法来减少模
- 分类(四)—— 支持向量机
shi_jiaye
python机器学习与数据挖掘机器学习人工智能python
主要内容分类概述决策树归纳K近邻算法支持向量机朴素贝叶斯分类模型评估与选择组合分类小结四、支持向量机支持向量机(SupportVetorMachine,SVM)由Vapnik等人于1995年首先提出,在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并推广到人脸识别、行人检测和文本分类等其他机器学习问题中。SVM建立在统计学习理论的VC维理论和结构风险最小原理基础上,根据有限的样本信息在模
- 基于YOLOv8深度学习的高精度车辆行人检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉YOLO深度学习python车辆行人检测目标检测
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。