Linux输入子系统(2):input.c实现细节

注:内核版本为 kernel-2.6.30.4

一、input子系统初始化
整个input子系统是作为一个字符设备驱动,它们的主设备号是13,不同的设备次设备号不同,input驱动注册的时候提供的fops
里面只包括一个open函数.

static const struct file_operations input_fops = {
	.owner = THIS_MODULE,
	.open = input_open_file,
};

static int __init input_init(void)
{
	int err;
	input_init_abs_bypass();
	err = class_register(&input_class);//新建类
	if (err) {
		printk(KERN_ERR "input: unable to register input_dev class\n");
		return err;
	}
	err = input_proc_init();//新建/proc入口
	if (err)
		goto fail1;
	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);//注册输入子系统,主设备号为13
	if (err) {
		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
		goto fail2;
	}
	return 0;
 fail2:	input_proc_exit();
 fail1:	class_unregister(&input_class);
	return err;
}

static int input_open_file(struct inode *inode, struct file *file)
{
      struct input_handler *handler;
      /*static struct input_handler *input_table[8];input子系统最多维护8个事件处理方法
       *每个事件处理方法可以处理32个次设备号
       *调用input_register_handler的时候将input_handler按次设备号放在该数组中
       */
      handler = input_table[iminor(inode)>>5];//根据次设备号,获取该设备input_handler
      if (!handler || !(new_fops = fops_get(handler->fops))) { //提取handler里面的file_operations
              err = -ENODEV;
      goto out; }
      file->f_op = new_fops; //将设备的fops赋值给它的文件描述符的f_op
      err = new_fops->open(inode, file); //调用handler->fops->open实现文件的打开
}

二、设备驱动层设备链表建立过程

1.分配struct input_dev结构体

struct input_dev *input_allocate_device(void)
 {
  struct input_dev *dev;dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);//分配一个struct input_dev结构体
  if (dev) {dev->dev.type = &input_dev_type;
  dev->dev.class = &input_class;
  device_initialize(&dev->dev);
  mutex_init(&dev->mutex);
  spin_lock_init(&dev->event_lock);
  INIT_LIST_HEAD(&dev->h_list);//初始该设备的input_handle链表头
  INIT_LIST_HEAD(&dev->node);
  __module_get(THIS_MODULE);
  return dev;
}

2.设置struct input_dev结构体

/* 能产生哪类事件 */
  set_bit(EV_KEY, buttons_dev->evbit);//能产生按键类型事件
  set_bit(EV_REP, buttons_dev->evbit);//能产生重复类型事件

/* 能产生该类操作里的哪些事件: L,S,ENTER,LEFTSHIT */
  set_bit(KEY_L, buttons_dev->keybit);//能产生按键类型下的L键事件
  set_bit(KEY_S, buttons_dev->keybit);//能产生按键类型下的S键事件
  set_bit(KEY_ENTER, buttons_dev->keybit);//能产生按键类型下的ENTER键事件
  set_bit(KEY_LEFTSHIFT, buttons_dev->keybit);//能产生按键类型下的SHIFT键事件

3.注册struct input_dev结构体

int input_register_device(struct input_dev *dev)
{
	static atomic_t input_no = ATOMIC_INIT(0);
	struct input_handler *handler;
	const char *path;
	int error;

	__set_bit(EV_SYN, dev->evbit);//设置支持同步事件,每次事件上报结束就发送这个事件
	/*
	 * If delay and period are pre-set by the driver, then autorepeating
	 * is handled by the driver itself and we don't do it in input.c.
	 */

	init_timer(&dev->timer);
	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
		dev->timer.data = (long) dev;
		dev->timer.function = input_repeat_key;
		dev->rep[REP_DELAY] = 250;
		dev->rep[REP_PERIOD] = 33;
	}

	if (!dev->getkeycode)
		dev->getkeycode = input_default_getkeycode;
	if (!dev->setkeycode)
		dev->setkeycode = input_default_setkeycode;
	dev_set_name(&dev->dev, "input%ld",(unsigned long) atomic_inc_return(&input_no) - 1);
	error = device_add(&dev->dev);//将设备注册到设备模型中去,这样在/sys目录下将新建一个以目录
	if (error)
		return error;
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
	printk(KERN_INFO "input: %s as %s\n",dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
	kfree(path);

	error = mutex_lock_interruptible(&input_mutex);
	if (error) {
		device_del(&dev->dev);
		return error;
	}

	list_add_tail(&dev->node, &input_dev_list);//将input_dev加入到input子系统维护的全局input_dev链表中去
	list_for_each_entry(handler, &input_handler_list, node)//取出input子系统维护的全局input_handler链表的元素
            input_attach_handler(dev, handler);//找出能处理新注册的input_dev的设备方法input_handler
	input_wakeup_procfs_readers();
	mutex_unlock(&input_mutex);
	return 0;
}
4.input_dev和input_handler匹配过程
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
	const struct input_device_id *id;
	int error;

	if (handler->blacklist && input_match_device(handler->blacklist, dev))//input_dev在input_handler的黑名单中,就直接返回
		return -ENODEV;
	id = input_match_device(handler->id_table, dev);//比较input_handler的id_table是否支持input_dev
	if (!id)
		return -ENODEV;
	error = handler->connect(handler, dev, id);//如果input_hander能支持该设备就调用它的connect函数
	if (error && error != -ENODEV)
		printk(KERN_ERR"input: failed to attach handler %s to device %s, ""error: %d\n",handler->name, kobject_name(&dev->dev.kobj), error);
	return error;
}

5.匹配成功
Linux输入子系统(2):input.c实现细节_第1张图片

input_dev和input_handler匹配成功后将调用handler的connect函数,现在以内核中evdev提供的evdev_handler的connect为例

static int evdev_connect(struct input_handler *handler, struct input_dev *dev,const struct input_device_id *id)
{
	struct evdev *evdev;
	int minor;
	int error;

	for (minor = 0; minor < EVDEV_MINORS; minor++)
		if (!evdev_table[minor])
			break;
	if (minor == EVDEV_MINORS) {
		printk(KERN_ERR "evdev: no more free evdev devices\n");
		return -ENFILE;
	}

	evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
	if (!evdev)
		return -ENOMEM;

	INIT_LIST_HEAD(&evdev->client_list);
	spin_lock_init(&evdev->client_lock);
	mutex_init(&evdev->mutex);
	init_waitqueue_head(&evdev->wait);

	snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);
	evdev->exist = 1;
	evdev->minor = minor;

	evdev->handle.dev = input_get_device(dev);
	evdev->handle.name = evdev->name;
	evdev->handle.handler = handler;
	evdev->handle.private = evdev;

	dev_set_name(&evdev->dev, evdev->name);
	evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
	evdev->dev.class = &input_class;
	evdev->dev.parent = &dev->dev;
	evdev->dev.release = evdev_free;
	device_initialize(&evdev->dev);

	error = input_register_handle(&evdev->handle);//新建一个input_handle,用于联系匹配的input_dev和input_handler
	if (error)
		goto err_free_evdev;
	error = evdev_install_chrdev(evdev);
	if (error)
		goto err_unregister_handle;
	error = device_add(&evdev->dev);//将该evdev加入到设备模型中去
	if (error)
		goto err_cleanup_evdev;

	return 0;
 err_cleanup_evdev:
	evdev_cleanup(evdev);
 err_unregister_handle:
	input_unregister_handle(&evdev->handle);
 err_free_evdev:
	put_device(&evdev->dev);
	return error;
}

input_register_handle用于将handle挂靠在dev和handler的h_list链表上

int input_register_handle(struct input_handle *handle)
{
	struct input_handler *handler = handle->handler;//获得input_handle关联的input_handler
	struct input_dev *dev = handle->dev;//获得input_handle关联的input_dev
	int error;

	error = mutex_lock_interruptible(&dev->mutex);
	if (error)
		return error;
	list_add_tail_rcu(&handle->d_node, &dev->h_list);//将input_handle挂在input_dev的h_list链表上
	mutex_unlock(&dev->mutex);
	list_add_tail(&handle->h_node, &handler->h_list);//将input_handle挂在input_handler的h_list链表上

	if (handler->start)
		handler->start(handle);

	return 0;
}

二、事件处理层的设备处理方法链表建立过程

内核自带很多的设备处理方法,当有新的设备,evdev.c里面注册的evdev_handler就可以处理任何的input_dev设备。

int input_register_handler(struct input_handler *handler)
{
	struct input_dev *dev;
	int retval;

	retval = mutex_lock_interruptible(&input_mutex);
	if (retval)
		return retval;
	INIT_LIST_HEAD(&handler->h_list);//初始化input_handler的input_handle链表

	if (handler->fops != NULL) {
		if (input_table[handler->minor >> 5]) {
			retval = -EBUSY;
			goto out;
		}
	input_table[handler->minor >> 5] = handler;//根据次设备号找到新handler存放位置
	}

	list_add_tail(&handler->node, &input_handler_list);//将该新建的handler加入到input子系统维护的全局handler链表中
	list_for_each_entry(dev, &input_dev_list, node)//遍历input子系统维护的全局dev链表
		input_attach_handler(dev, handler);//找到和它匹配的input_dev
	input_wakeup_procfs_readers();
 out:
	mutex_unlock(&input_mutex);
	return retval;
}

三、应用程序访问input设备节点

1.打开设备节点

当应用程序调用open("/dev/eventxx",O_RDWR),会调用驱动层的input_open_file.该函数会根据设备的次设备号在 struct input_handler *input_table[8]找到它对应的input_handler,然后取出里面的fops赋值给文件描述符使用。

2.读写设备节点(evdev.c为例)

当应用程序调用read后将调用到input_handler的read函数,如果设备现在没有数据可读,那个调用read的进程将休眠等待

static ssize_t evdev_read(struct file *file, char __user *buffer,size_t count, loff_t *ppos)
{
 struct evdev_client *client = file->private_data;
 struct evdev *evdev = client->evdev;
 struct input_event event;
 int retval;

 if (count < input_event_size())
  return -EINVAL;
        /*缓冲队列为空&&*evdev存在&&文件为非阻塞/
 if (client->head == client->tail && evdev->exist &&(file->f_flags & O_NONBLOCK))
  return -EAGAIN;
        /*将进程休眠等待在evdev->wait上,至到缓冲区有数据或者evdev不存在*/
 retval = wait_event_interruptible(evdev->wait,client->head != client->tail || !evdev->exist);
 if (retval)
  return retval;
 if (!evdev->exist)
          return -ENODEV;
 while (retval + input_event_size() <= count &&evdev_fetch_next_event(client, &event)) {
  if (input_event_to_user(buffer + retval, &event))
   return -EFAULT;
  retval += input_event_size();
 }

 return retval;
}
3.硬件设备有动作,唤醒读等待进程

当设备驱动层有数据的时候,就会调用input_event,这将导致input_handler的event函数被调用。(evdev.c为例)

static void evdev_event(struct input_handle *handle,unsigned int type, unsigned int code, int value)
{
  struct evdev *evdev = handle->private;
  struct evdev_client *client;
  struct input_event event;

  do_gettimeofday(&event.time);
  event.type = type;
  event.code = code;
  event.value = value;

  rcu_read_lock();
  client = rcu_dereference(evdev->grab);
  if (client)
  evdev_pass_event(client, &event);
  else
    list_for_each_entry_rcu(client, &evdev->client_list, node)
  evdev_pass_event(client, &event);
  rcu_read_unlock();
  //唤醒因读这个evdev设备而休眠的设备
  wake_up_interruptible(&evdev->wait);
}

参考文章:
http://www.cnblogs.com/myblesh/articles/2367648.html

 

 

你可能感兴趣的:(input.c)