http://blog.csdn.net/lilyth_lilyth/article/details/8973972

随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降(batch gradient descent),迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

随机梯度和批量梯度的实现差别

以前一篇博文中NMF实现为例,列出两者的实现差别(注:其实对应python的代码要直观的多,以后要练习多写python!)

 

[java]  view plain copy
  1. // 随机梯度下降,更新参数  
  2. public void updatePQ_stochastic(double alpha, double beta) {  
  3.     for (int i = 0; i < M; i++) {  
  4.         ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();  
  5.         for (Feature Rij : Ri) {  
  6.             // eij=Rij.weight-PQ for updating P and Q  
  7.             double PQ = 0;  
  8.             for (int k = 0; k < K; k++) {  
  9.                 PQ += P[i][k] * Q[k][Rij.dim];  
  10.             }  
  11.             double eij = Rij.weight - PQ;  
  12.   
  13.             // update Pik and Qkj  
  14.             for (int k = 0; k < K; k++) {  
  15.                 double oldPik = P[i][k];  
  16.                 P[i][k] += alpha  
  17.                         * (2 * eij * Q[k][Rij.dim] - beta * P[i][k]);  
  18.                 Q[k][Rij.dim] += alpha  
  19.                         * (2 * eij * oldPik - beta * Q[k][Rij.dim]);  
  20.             }  
  21.         }  
  22.     }  
  23. }  
  24.   
  25. // 批量梯度下降,更新参数  
  26. public void updatePQ_batch(double alpha, double beta) {  
  27.   
  28.     for (int i = 0; i < M; i++) {  
  29.         ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();  
  30.   
  31.         for (Feature Rij : Ri) {  
  32.             // Rij.error=Rij.weight-PQ for updating P and Q  
  33.             double PQ = 0;  
  34.             for (int k = 0; k < K; k++) {  
  35.                 PQ += P[i][k] * Q[k][Rij.dim];  
  36.             }  
  37.             Rij.error = Rij.weight - PQ;  
  38.         }  
  39.     }  
  40.   
  41.     for (int i = 0; i < M; i++) {  
  42.         ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();  
  43.         for (Feature Rij : Ri) {  
  44.             for (int k = 0; k < K; k++) {  
  45.                 // 对参数更新的累积项  
  46.                 double eq_sum = 0;  
  47.                 double ep_sum = 0;  
  48.   
  49.                 for (int ki = 0; ki < M; ki++) {// 固定k和j之后,对所有i项加和  
  50.                     ArrayList<Feature> tmp = this.dataset.getDataAt(i).getAllFeature();  
  51.                     for (Feature Rj : tmp) {  
  52.                         if (Rj.dim == Rij.dim)  
  53.                             ep_sum += P[ki][k] * Rj.error;  
  54.                     }  
  55.                 }  
  56.                 for (Feature Rj : Ri) {// 固定k和i之后,对多有j项加和  
  57.                     eq_sum += Rj.error * Q[k][Rj.dim];  
  58.                 }  
  59.   
  60.                 // 对参数更新  
  61.                 P[i][k] += alpha * (2 * eq_sum - beta * P[i][k]);  
自我理解 http://blog.csdn.net/lilyth_lilyth/article/details/8973972 ,该网址的其余部分绝对绝对不必看,看NG的Coursera课程Machine learning的Lecture17即可