- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 数据结构与算法学习笔记----Kruskal算法
明月清了个风
数据结构与算法笔记(基础课)算法学习笔记
数据结构与算法学习笔记----Kruskal算法@@author:明月清了个风@@firstpublishtime:2024.12.21ps⭐️这也是一个思想比较简单的算法,只写了基本思想,具体的可以看代码理解一下Kruskal算法Kruskal算法同样是一种基于贪心策略的最小生成树求解算法,另一种是上一篇中的Prim算法。基本思想将所有的边按边长从小到大排序。遍历所有边,判断每条边所连接的两个节
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- Leetcode刷题 | Day61_图论07
freyazzr
leetcode图论算法数据结构c++
一、学习任务最小生成树——prim算法代码随想录最小生成树——kruskal算法代码随想录Kruskal与prim的关键区别在于,prim维护的是节点的集合,而Kruskal维护的是边的集合。在节点数量固定的情况下,图中的边越少,Kruskal需要遍历的边也就越少。而prim算法是对节点进行操作的,节点数量越少,prim算法效率就越优。边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图
- 搜索与图论--Floyd/Prim/Kruskal
Spike_Q
算法学习图论算法数据结构c++
目录1.Floyd求最短路输入格式输出格式数据范围输入样例:输出样例:代码展示:2.Prim算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:3.Kruskal算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:WATER~1.Floyd求最短路给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定k个询问,每个询问包含两个整数x和y,表
- 算法笔记.kruskal算法求最小生成树
xin007hoyo
算法笔记图论
题目:(来源:AcWing)给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的
- 青少年编程与数学 02-018 C++数据结构与算法 16课题、贪心算法
明月看潮生
编程与数学第02阶段青少年编程c++贪心算法编程与数学算法
青少年编程与数学02-018C++数据结构与算法16课题、贪心算法一、贪心算法的基本概念定义组成部分二、贪心算法的工作原理三、贪心算法的优点四、贪心算法的缺点五、贪心算法的应用实例(一)找零问题问题描述:贪心策略:示例代码:解释:(二)活动安排问题问题描述:贪心策略:示例代码:解释:(三)霍夫曼编码问题描述:贪心策略:示例代码:解释:(四)最小生成树(Kruskal算法)问题描述:贪心策略:示例代
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
avq94452
javac/c++
转载自——》https://www.cnblogs.com/ninedream/p/11203704.html最小生成树:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。最小生成树问题一般有以下两种求解方式。一、Prim算法
- 图的最小生成树--Prim算法与Kruskal算法
MinBadGuy
数据结构与算法图论primkruskal
1.相关概念1.1生成树概念所谓一个图的生成树是一个极小连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从上述定义可知,如果一个图有n个顶点和小于n-1条边,则是非连通图,如果它多余n-1条边,必定构成一个环。注意:(1)一个图可以有多棵不同的生成树;(2)具有n-1条边并不一定是生成树。1.2最小生成树给定一个连通网,在该往的所有生成树中,使得各边权值之和最小的那棵生成树称
- 图论---Kruskal(稀疏图)
快乐的小涵
图论c++算法数据结构
O(m*logn)。1,将所有边按权重从小到大排序,调用系统的sort()2,枚举每条边的a,b,权重if(a、b不联通)就将这条边加入集合中//最小生成树—Kruskal算法(稀疏图)#include#includeusingnamespacestd;constintN=200010;intn,m;intp[N];//并查集中的p数组structEdge{inta,b,w;//重载>n>>m;f
- 【图论】最小生成树——prim算法
fftx_00
图论数据结构算法
一、什么是最小生成树最小生成树(MinimumSpanningTree,MST):在一个给定的无向图G中求一棵树T,树T拥有图G的所有顶点,所有边都来自图G,使得整棵树的边权最小贪心策略:prim算法:让小树长大kruskal算法:将森林合并成树二、prim算法与Dijkstra算法区别:思想几乎完全相同,Dijkstra算法的最短距离指到源点s的最短距离;prim算法的最短距离指到集合s的最短距
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- Java数据结构实战项目集:算法与GUI实现
DarthP
本文还有配套的精品资源,点击获取简介:Java中的数据结构和算法是提高数据处理效率的关键。本项目集包括了Java实现的几种核心数据结构和算法,例如图算法Dijkstra和Kruskal以及编码技术Huffman编码,并详细探讨了它们的工作原理和应用。Dijkstra算法用于找到图中两点间的最短路径,Kruskal算法用于最小生成树问题,而Huffman编码则用于数据压缩。通过GUI界面的交互,项目
- Kruskal 算法介绍
chengqiuming
数据结构与算法Kruskal算法最小生成树图论连通分支贪心选择
一点睛构造最小生成树还有一种算法,即Kruskal算法:设图G=(V,E)是无向连通带权图,V={1,2,...n};设最小生成树T=(V,TE),该树的初始状态只有n个节点而无边的非连通图T=(V,{}),Kruskal算法将这n个节点看成n个孤立的连通分支。它首先将所有边都按权值从小到大排序,然后值要在T中选的边数不到n-1,就做这样贪心选择:在边集E中选择权值最小的边(i,j),如果将边(i
- 9.6.1 ACM-ICPC 数据结构 并查集
夏驰和徐策
ICPC数据结构算法并查集
9.6.1ACM-ICPC数据结构:并查集并查集简介并查集(Union-Find或DisjointSetUnion)是一种用于管理不相交集合的数据结构,主要支持两种操作:合并(Union)和查找(Find)。它在解决连通性问题、图论问题(如最小生成树的Kruskal算法)以及其他需要动态连通性维护的场景中有着广泛应用。并查集的核心思想是通过树结构表示集合中的元素,并通过路径压缩和按秩合并等优化手段
- 十六届蓝桥杯C++组备赛必看:高频算法与核心知识点梳理
A好名字A
蓝桥杯c++算法
制作不易,感谢浏览。文章目录一、避开那些"送分题"的坑1.1数据类型与极值的边界1.2STL容器使用速查表1.3C++11/14/17新特性速览(慎用高级语法)二、暴力算法的蜕变2.1搜索结果与剪枝艺术2.2动态规划(DP)的使用2.3贪心算法的使用2.4图论算法模板速记Dijkstra算法Kruskal算法(最小生成树)Floyd算法(多源最短路)2.5分治与归并排序三、常用数学思路3.1数论必
- 常见算法模板(python)
雨拾
python算法深度优先
常见算法模板(python)二分搜索(实数搜索、整数搜索)前缀和、差分数组深度优先搜索DFS宽度优先搜索BFS并查集树状数组线段树稀疏表动态规划(矩阵)快速幂字符串匹配算法-KMPFloyd算法Dijkstra算法Bellman-Ford算法SPFA算法Prim算法Kruskal算法二分搜索(实数搜索、整数搜索)#-*-coding:utf-8-*-#@Author:BYW-yuwei#@Soft
- c语言数据结构-------最小生成树(Prim和Kruskal算法)
javaisC
c语言数据结构算法
#include#include#include#include//图,邻接矩阵存储#defineMaxVertexNum100//最大顶点数typedefstruct{charvex[MaxVertexNum];//顶点表intedge[MaxVertexNum][MaxVertexNum];//边表intvernum,arcnum;//记录当前图的顶点数量和边数}MGraph;//初始化图MG
- 图论-最短路径算法总结
lkcc
笔记图论数据结构算法
文章目录图论单源最短路径全源最短路径问题最小生成树Prim算法Kruskal算法图论单源最短路径边权全部为正的时候,Dijkstra算法最优秀,还可以优先队列优化。Dijkstra算法朴素版需要循环枚举出来当前的最小值(作为优化的起点)所以可以用大顶堆来优化设置集合S存放已被访问的顶点,然后执行①②每次从集合(未被攻占)中选择与起点最短距离最小的点(记为U),访问并加入集合(被攻占)令顶点U为中介
- 代码随想录算法营Day62 | 寻宝(Prim算法,kruskal算法)
寂枫zero
算法python
寻宝(Prim算法,kruskal算法)在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。最小生成树P
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- PTA 最小生成树与拓扑排序
abyss_miracle
数据结构基础数据结构c++
最小生成树特点:1.是一棵树。无回路,N个顶点有N-1条边。2.是生成树。包含全部顶点,N-1条边都在图里。3.边的权重和最小。主要包括两种算法,一种是让小树慢慢长大的Prim算法(先定一个顶点为起点,然后每次都找到离这棵树最近的那个顶点,将他归进树内,直到正好用掉顶点数N-1条边)。二是Kruskal算法,将一个个森林(一开始每个节点都是森林)连成树。每次在图中找所有的边中权重最小的那个边,将其
- 图论题解索引
JLU_LYM
各类型题解索引图论算法数据结构题解索引解题攻略
前言作图论的题的时候,无论何时,DFS,BFS加剪枝,都是你可靠的方法,如果第一眼没有具体思路,完全可以先按照刚才的两个方法思考下去,可能想着想着,这道题真实的样子(即真正合适的算法),你就发现了。并查集1、并查集计算连通分量数:力扣547省份数量2、并查集维护一个大集合问题(是一个集合不可以连线)+计算连通分量变种题目力扣684冗余连接3、并查集维护连通分量是否为1的Kruskal算法:力扣15
- 【Day47 LeetCode】图论问题 Ⅴ
银河梦想家
leetcode图论算法
一、图论问题Ⅴ今天学习最小生成树算法–prim算法和kruskal算法。最小生成树是所有节点的最小连通子图,有n个节点则必有n-1条边将所有节点连接起来。如何选取n-1条边使得图中所有节点连接到一起,并且边的权值和最小,这就是最小生成树问题。1、prim算法–寻宝问题prim算法的思想是每次寻找距离最小生成树最近的节点,并加入到最小生成树中。prim主要有三步:1、选距离生成树最近节点;2、最近节
- 图论 之 最小生成树
JNU freshman
蓝桥杯算法图论算法蓝桥杯
文章目录题目1584.连接所有点的最小费用最小生成树MST,有两种算法进行求解,分别是Kruskal算法和Prim算法Kruskal算法从边出发,适合用于稀疏图Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始,逐步扩展生成树,每次选择一条连接已选顶点和未选顶点的最小权重边,直到所有顶点都被包含在生成树中。Prim算法的基本步骤:初始化:选择一个起始顶点,将其加入生成树中。选择最
- 图论- 经典最小生成树算法
左灯右行的爱情
图论算法
最小生成树算法什么是最小生成树Kruskal算法关键代码实现Prim最小生成树算法Kruskal和Prim算法的区别为什么Prim算法不需要判断成环,但Kruskal需要什么是最小生成树在图中找一棵包含图中所有节点的树,且权重和最小的那棵树就叫最小生成树.如下:右侧生成树的权重和显然比左侧生成树的权重和要小。(但是它并不是最小的,这里只是比较一下不同的树)Kruskal算法最小生成树是若干条边的集
- 图论---最小生成树
漫漫信奥之路
图论图论算法数据结构
树是一种特殊的图,具有很多特殊的性质。生成树问题研究的是将图中的所有顶点保留,但只选择图中的部分边,得到一棵树(也就是图的生成树)的问题。最小生成树则是在这些生成树中,边权之和最小的生成树。可以使用prime算法或者kruskal算法求解最小生成树。生成树相关概念1、生成树定义在一个V个点的无向连通图中,取其中V-1条边,并连接所有的顶点,所得到的子图称为原图的一棵生成树2、树的属性树是图的一种特
- Day63_20250211_图论part7 prim算法|kruskal算法精讲
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论算法深度优先数据结构java
Day63_20250211_图论part7prim算法|kruskal算法精讲prim算法【维护节点的集合】题目题目描述在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛
- 最小生成树相关题解
于冬恋
数据结构算法
该题用Kruskal算法可以写出(因为我只会这个算法的实现)每次选择一条权值最小的边,使这条边的两头连通(原本已经连通的就不选),直到所有结点都连通#include#include#includeusingnamespacestd;intn,m,i,j,u,v,total;structnode{intstart,to;longlongedge;}bian[10000000];//结构体数组intf
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方