LightOJ 1369 - Answering Queries(规律)

1369 - Answering Queries
PDF (English) Statistics Forum

Time Limit: 3 second(s)

Memory Limit: 32 MB

The problem you need to solve here is pretty simple. You are give a function f(A, n), where A is an array of integers and n is the number of elements in the array. f(A, n) is defined as follows:

long long f( int A[]int n ) { // n = size of A

    long long sum = 0;

    for( int = 0; i < n; i++ )

        for( int = i + 1; j < n; j++ )

            sum += A[i] - A[j];

    return sum;

}

Given the array A and an integer n, and some queries of the form:

1)      0 x v (0 ≤ x < n, 0 ≤ v ≤ 106), meaning that you have to change the value of A[x] to v.

2)      1, meaning that you have to find f as described above.

Input

Input starts with an integer T (≤ 5), denoting the number of test cases.

Each case starts with a line containing two integers: n and q (1 ≤ n, q ≤ 105). The next line contains n space separated integers between 0 and106 denoting the array A as described above.

Each of the next q lines contains one query as described above.

Output

For each case, print the case number in a single line first. Then for each query-type "1" print one single line containing the value of f(A, n).

Sample Input

Output for Sample Input

1

3 5

1 2 3

1

0 0 3

1

0 2 1

1

Case 1:

-4

0

4



题意就不说了,按照题目给的函数写,果断超时,于是想了一会发现sum+=a[i]*(n-1-i*2); 于是两层for循环改成了一次, 以为会过,又超时了。QAQ。。。  后来看队友的写法,当数组中值改变时,直接改sum的值,那样从头到尾只用了一次for循环求值。


当i=0时,有a0-a1+a0-a2+a0-a3+.....,当i=1时,有a1-a2+a1-a3+a1+.....,观察可得发现第一个式子刚好比第二个多出来 n-i 个(a0-a1)。之后操作时要改变值时直接在之前求得的总和身上改,例如改变了 a7 增加了2 则从第8到n 个数被 a7减时结果都要多2,而从第0个到第6个减 a7 时结果都小2 。


具体代码如下:


#include<cstdio>
#include<cstring> 
#define maxn 100010
int a[maxn];

long long f(int a[],int n)
{
	long long sum=0,temp=0;
	int i;
	for(i=1;i<n;++i)
		temp+=a[0]-a[i];
	sum=temp;
	for(i=1;i<n;++i)
	{
		long long cnt=a[i]-a[i-1];//此处必须将a[i]-a[i-1]的结果转化为long long 型。 
		temp+=(n-i)*cnt;
		sum+=temp;
	}
	return sum;
}

int main()
{
	int t,n,x,v,q,k=1,i,m;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&q);
		for(i=0;i<n;++i)
			scanf("%d",&a[i]);
		long long sum=f(a,n);
		printf("Case %d:\n",k++);
		while(q--)
		{
			scanf("%d",&m);
			if(m)
				printf("%lld\n",sum);
			else
			{
				scanf("%d%d",&x,&v);
				long long temp=v-a[x];
				a[x]=v;
				sum+=(n-1-x-x)*temp;
			}
		} 
	}
	return 0;
}





你可能感兴趣的:(LightOJ 1369 - Answering Queries(规律))