H.264中整数DCT变换,量化,反量化,反DCT究竟是如何实现的?(无代码,无真相)

        H.264中采用的是整数DCT变换,在实现的时候,该变换和量化又杂糅在一起,那么这些错综复杂的关系究竟是怎样纠缠的呢?在参考H.264乐园论坛会员cs1860wd的帖子和H.264 and MPEG-4 VIDEO COMPRESSION(第一版)这本书后,基于帖子和书上的讲解,给出相应的实现代码,并验证代码的正确性.

 

        还是以foreman视频第一帧第一个宏块第一个4*4块为例. 下面给出像素值:

====================== Y Data ======================
+----------------+----------------+----------------+----------------+
| 43,216,254,249,|251,254,254,253,|251,252,254,254,|254,254,254,253,|
| 49,198,193,211,|228,205,213,185,|211,207,186,248,|198,203,208,183,|
| 48,194,177,171,|197,173,185,136,|191,195,138,179,|142,176,177,135,|
| 46,214,225,169,|177,189,198,160,|203,208,177,165,|173,196,191,156,|
+----------------+----------------+----------------+----------------+
| 41,185,208,180,|203,228,226,200,|214,226,225,227,|228,225,224,210,|
| 31,130,173,178,|215,230,221,212,|220,229,227,228,|229,227,226,226,|
| 29,119,194,216,|211,213,219,222,|225,223,220,219,|218,218,218,218,|
| 25,126,219,224,|217,224,227,227,|227,226,225,224,|220,220,221,222,|
+----------------+----------------+----------------+----------------+
| 26,131,215,223,|226,225,225,225,|225,226,223,219,|221,221,219,220,|
| 30,136,216,226,|223,224,225,225,|224,221,217,221,|222,219,220,226,|
| 30,136,216,227,|224,224,225,223,|221,218,221,216,|211,224,224,211,|
| 29,135,217,225,|222,221,222,222,|221,209,181,155,|186,210,186,164,|
+----------------+----------------+----------------+----------------+
| 29,134,216,224,|226,230,230,227,|206,177,146,113,|149,162,147,150,|
| 29,135,219,231,|225,201,190,185,|163,144,153,140,|127,143,165,184,|
| 30,139,210,192,|165,142,134,133,|143,141,129,138,|150,178,201,207,|
| 30,125,166,145,|144,154,132,111,|118,161,175,180,|204,214,213,209,|
+----------------+----------------+----------------+----------------+

 

           该块的预测值为128(16个位置都是128),之前分析过,在JM8.6中,这一块在编码端和解码端的QDCT均为:

         9   -12   -11   -5

         3    -3      1     0 

         3    -1     -2     1

         0     0      0     0

 

         且用H.264visa从码流中得到的DCT系数为:(注意解码端的DCT与编码端的DCT必然不同)

====================== Y Data ======================
+------------------------+------------------------+------------------------+------------------------+
| 2304,-3840,-2816,-1600,|  768,  640, -256,  640,| 1280,  320,  256, -640,|  768, -320, -768,    0,|
960,-1200,  320, 0,|    0,    0,  320,    0,| -640, -800,    0,    0,|  960, -800,  320,    0,|
768, -320, -512,  320,|  512, -640,    0, -320,| -768,  320, -512,  320,|  768,    0,  256,    0,|
|    0,    0,    0,    0,|    0,    0,    0,    0,|    0,  400,    0,    0,| -320,    0,    0,    0,|
+------------------------+------------------------+------------------------+------------------------+
|-1024,-5120,-1792, -640,| 2560, -640, -256,    0,|  512,    0,    0,    0,|    0,    0,    0,    0,|
|    0, 1200, -640, -400,| -320,  400,    0,    0,|  640,    0,    0,    0,|  320,    0,    0,    0,|
|  512,    0, -256,    0,|    0,    0,    0,    0,|    0,    0,    0,    0,|    0,    0,    0,    0,|
|  320,    0,    0,    0,| -320,    0,    0,    0,|    0,    0,    0,    0,|    0,    0,    0,    0,|
+------------------------+------------------------+------------------------+------------------------+
|    0,  320,    0,    0,|    0,    0,    0,    0,| -768,  640,    0,    0,|  512,    0, -256,    0,|
|    0,    0,    0,    0,|    0,    0,    0,    0,|  640, -800,    0,    0,| -640, -400,  320,    0,|
|    0,    0,    0,    0,|    0,    0,    0,    0,| -256,  320,    0,    0,|    0,  320,    0,    0,|
|    0,    0,    0,    0,|    0,    0,    0,    0,|  320, -400,    0,    0,| -320,    0,    0,    0,|
+------------------------+------------------------+------------------------+------------------------+
| -512,  640, -256,    0,|    0,    0,    0,    0,| 1024, -320, -256,    0,| 1024, -320,    0,    0,|
|  960,-1200,  320,    0,|  960, -800,  320,    0,|-1280,  800,    0,  400,| -640,  400,    0,    0,|
| -512,  320,    0,    0,|    0,    0, -256,    0,|    0,    0, -256,    0,|  512,  640,    0,    0,|
|    0,    0,    0,    0,| -320,    0,    0,    0,| -640,  800,    0,    0,|    0,    0,    0,    0,|
+------------------------+------------------------+------------------------+------------------------+

 

           下面根据变换,量化,反量化和反变换公式给出如下程序,看看是否与上述数据一致.(需要特别指出的是:JM8.6中并不是这么实现的,但本质是相同的,最后结果也一样.)

 

#include <iostream>
#include <cmath>
#define BLOCK_SIZE 4
using namespace std;

int QP = 28; // 量化参数

//原始的YUV矩阵
int orgYUV[BLOCK_SIZE][BLOCK_SIZE] =
{
	43, 216, 254, 249,
    49, 198, 193, 211,
    48, 194, 177, 171,
    46, 214, 225, 169
};

//预测值矩阵
int predYUV[BLOCK_SIZE][BLOCK_SIZE] =
{
	128, 128, 128, 128,
	128, 128, 128, 128,
	128, 128, 128, 128,
	128, 128, 128, 128
};

int D[BLOCK_SIZE][BLOCK_SIZE];  //中间矩阵
int Di[BLOCK_SIZE][BLOCK_SIZE]; //中间矩阵

int W[BLOCK_SIZE][BLOCK_SIZE];  //核矩阵
int Z[BLOCK_SIZE][BLOCK_SIZE];  //QDCT矩阵
int Wi[BLOCK_SIZE][BLOCK_SIZE]; //Wi矩阵

int Xi[BLOCK_SIZE][BLOCK_SIZE]; //解码的残差矩阵

//Cf矩阵
int Cf[BLOCK_SIZE][BLOCK_SIZE]=
{
    1, 1,  1, 1,
    2, 1, -1, -2,
    1,-1, -1, 1,
    1,-2,  2, -1
};

//Ci矩阵      
int Ci[BLOCK_SIZE][BLOCK_SIZE]=
{
    2,  2,  2,  1,
    2,  1, -2, -2,
    2, -1, -2,  2,
    2, -2,  2, -1
};

//MF矩阵
int MF[6][3]=
{
    13107, 5243, 8066,
    11916, 4660, 7490,
    10082, 4194, 6554,
    9362,  3647, 5825,
    8192,  3355, 5243,
    7282,  2893, 4559
};

//Qstep矩阵
int V[6][3]=
{
    10, 16, 13,
    11, 18, 14,
    13, 20, 16,
    14, 23, 18,
    16, 25, 20,
    18, 29, 23
};

//矩阵转置
void matrixTransform(int a[][BLOCK_SIZE])
{
	int i, j, tmp;
	for(i = 0; i < BLOCK_SIZE; i++)
	{
		for(j = 0; j < BLOCK_SIZE; j++)
		{
			if(i < j)
			{
				tmp = a[i][j];
				a[i][j] = a[j][i];
				a[j][i] = tmp;
			}
		}
	}
}

//矩阵求差
void  matrixSubtract(int a[][BLOCK_SIZE],int b[][BLOCK_SIZE])
{
    int i, j;
    for(i = 0;i < BLOCK_SIZE; i++)
	{
        for(j = 0; j < BLOCK_SIZE; j++)
        {
            a[i][j] -= b[i][j];
		}
	}
}

//矩阵求积
void  matrixMultiply(int a[][BLOCK_SIZE],int b[][BLOCK_SIZE],int c[][BLOCK_SIZE])
{
	int i, j, k;
	for(i = 0; i < BLOCK_SIZE; i++)
	{
		for(j = 0; j < BLOCK_SIZE; j++)
		{
			c[i][j] = 0;
			for(k = 0; k < BLOCK_SIZE; k++)
			{
				c[i][j] += a[i][k] * b[k][j];  
			}
		}
	}      
}

//矩阵显示
void matrixShow(int a[][BLOCK_SIZE])
{
    int i, j;
    cout << "*****************************" << endl;
    for(i = 0; i < BLOCK_SIZE; i++)
	{
        for(j = 0; j < BLOCK_SIZE; j++)
        {
            cout << a[i][j] << "\t";
        }
		cout << endl;
	}

    cout << "*****************************" << endl << endl;
}

//求QDCT
void quantizeDCT(int W[][BLOCK_SIZE])
{
	// QP决定了qbits和f, QP和位置(i, j)共同决定了mf
	int qbits = 15 + floor(QP / 6);
	int f = (int)( pow(2.0, qbits) / 3 );
	int mf;

	int i, j, k;
	for(i = 0; i < BLOCK_SIZE; i++)
	{
		for(j = 0; j < BLOCK_SIZE; j++)
		{
			//以下均依公式实现
			
			//(0, 0), (2, 0), (0, 2), (2, 2)  mf为 MF[QP % 6][0]
			//(1, 1), (3, 1), (1, 3), (3, 3)  mf为 MF[QP % 6][1];
			// other positions                mf为 MF[QP % 6][2];

			if((0 == i || 2 == i) && (0 == j || 2 == j))
				k = 0;
			else if((1 == i || 3 == i) && (1 == j || 3 == j))
				k = 1;
			else
				k = 2;

			mf = MF[QP % 6][k];
              
			Z[i][j] = ( abs(W[i][j]) * mf + f ) >> qbits;

			if(W[i][j] < 0)
				Z[i][j] = -Z[i][j];
		} 
		
	}
}

//求Wi(即解码端的DCT) (Z为QDCT)
void reverseQuantize(int Z[][BLOCK_SIZE])
{     
	int t = floor(QP / 6);                
	int f = (int)pow(2, t); 
	int v;
	
	int i, j, k;
	for(i = 0; i < BLOCK_SIZE; i++)
	{
		for(j = 0; j < BLOCK_SIZE; j++)
		{
			//以下均依公式实现
			  
			if((0 == i || 2 == i) && (0 == j || 2 == j))
				k = 0;
			else if((1 == i || 3 == i) && (1 == j || 3 == j))
				k = 1;
			else
				k = 2;

			v = V[QP % 6 ][k];
			Wi[i][j] = Z[i][j] * v * f;
		}
	}
}

int main()
{
	matrixSubtract(orgYUV, predYUV);
	cout << "Residual matrix is" << endl;
    matrixShow(orgYUV);

	//此时orgYUV变为残差矩阵
    matrixMultiply(Cf, orgYUV, D);
    matrixTransform(Cf);
    matrixMultiply(D, Cf, W);        

	//得到的W即为核
	cout << "Matrix Core(W) is" << endl;
    matrixShow(W);

	//利用核W来得到QDCT(Z)
    quantizeDCT(W);
	cout << "Matrix QDCT(Z) is" << endl;
    matrixShow(Z);
  
    //利用QDCT(Z)得到解码端的DCT(Wi).(Wi与编码端DCT必然不同)
    reverseQuantize(Z);
	cout << "Matrix W'(解码端DCT) is" << endl;
    matrixShow(Wi);

    //利用Wi得到解码的残差矩阵Xi
    matrixMultiply(Ci, Wi, Di); 
	matrixTransform(Ci);        
    matrixMultiply(Di, Ci, Xi);
	int i,j;
    for(i = 0;i < 4; i++)
	{
        for(j = 0; j < 4; j++)
		{
			Xi[i][j] = int( Xi[i][j] / 256.0 + 0.5 );
		}
	}
	cout << "Matrix Xi(解码端残差) is" << endl;
    matrixShow(Xi);

	return 0;
}



           结果为:(可以看出,结果中的QDCT和解码端的DCT都与之前的数据吻合,从而证明上面程序的实现是正确的.)

 

Residual matrix is
*****************************
-85     88      126     121
-79     70      65      83
-80     66      49      43
-82     86      97      41
*****************************

Matrix Core(W) is
*****************************
609     -1255   -685    -560
277     -476    113     -73
175     -159    -119    98
-14     -13     4       1
*****************************

Matrix QDCT(Z) is
*****************************
9       -12     -11     -5
3       -3      1       0
3       -1      -2      1
0       0       0       0
*****************************

Matrix W'(解码端DCT) is
*****************************
2304    -3840   -2816   -1600
960     -1200   320     0
768     -320    -512    320
0       0       0       0
*****************************

Matrix Xi(解码端残差) is
*****************************
-77     88      132     110
-80     63      67      77
-82     62      48      39
-79     87      93      32
*****************************

           下面,简要看看整数DCT变换的原理.(关于整数DCT变换公式的推倒,请参考余兆明的《图像编码标准H.264技术》). 

          

           DCT变换为:      DCT = A * X * At

           量化为:           QDCT =  floor(DCT/Qstep)

           反量化为:        DCT‘  = QDCT * Qstep

           反DCT为:              X’ = At * DCT‘ * A

 

           但在H.264中采用的是整数DCT, 在JM8.6中的实现方式也很有讲究:( .* 表示矩阵对应元素相乘)

          整数DCT变化为:       DCT = (Cf * X *Cft) .* E

          量化为:                    QDCT = floor(DCT/Qstep)

          反量化为:                  DCT‘ = QDCT * Qstep

          整数反DCT变换为:        X’ = Ci * (DCT‘ .* Ei) *Ci

 

          在实现的时候,经常不直接得到DCT系数,而是将变换和量化结合在一起实现. 整数DCT变换有很多好处:没有除法,没有浮点数,所以高效且准确,而且减少了矩阵运算.    

        

           最后感慨一下:如果上面的程序用matlab来仿真,就简单多了,matlab太适合处理矩阵问题了.

 

 

 

你可能感兴趣的:(H.264中整数DCT变换,量化,反量化,反DCT究竟是如何实现的?(无代码,无真相))