Linux虚拟文件系统(安装根文件系统)

安装根文件系统是系统初始化的关键部分。Linux内核允许根文件系统放在很多不同的地方,比如硬盘分区、软盘、通过NFS共享的远程文件系统以及保存在ramdisk中。内核要在变量ROOT_DEV中寻找包含根文件系统的磁盘主设备号。当编译内核时,或者像最初的启动装入程序传递一个合适的“root”选项时,根文件系统可以被指定为/dev目录下的一个设备文件。

安装根文件系统分为两个阶段:

1,内核安装特殊rootfs文件系统,该文件系统仅提供一个作为初始安装点的空目录

start_kernel()->vfs_caches_init()->mnt_init()->init_rootfs()

   1. /*初始化根文件系统*/  
   2. int __init init_rootfs(void)  
   3. {  
   4.     int err;  
   5.     /*初始化ramfs_backing_dev_info*/  
   6.     err = bdi_init(&ramfs_backing_dev_info);  
   7.     if (err)  
   8.         return err;  
   9.     /*注册rootfs_fs_type文件类型*/  
  10.     err = register_filesystem(&rootfs_fs_type);  
  11.     if (err)/*如果出错,销毁上面初始化的*/  
  12.         bdi_destroy(&ramfs_backing_dev_info);  
  13.   
  14.     return err;  
  15. }  

   1. static struct backing_dev_info ramfs_backing_dev_info = {  
   2.     .name       = "ramfs",  
   3.     .ra_pages   = 0,    /* No readahead */  
   4.     .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK |  
   5.               BDI_CAP_MAP_DIRECT | BDI_CAP_MAP_COPY |  
   6.               BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP,  
   7. };  

   1. /** 
   2.  *  register_filesystem - register a new filesystem 
   3.  *  @fs: the file system structure 
   4.  * 
   5.  *  Adds the file system passed to the list of file systems the kernel 
   6.  *  is aware of for mount and other syscalls. Returns 0 on success, 
   7.  *  or a negative errno code on an error. 
   8.  * 
   9.  *  The &struct file_system_type that is passed is linked into the kernel  
  10.  *  structures and must not be freed until the file system has been 
  11.  *  unregistered. 
  12.  */  
  13.  /*注册一个新的文件系统*/  
  14. int register_filesystem(struct file_system_type * fs)  
  15. {  
  16.     int res = 0;  
  17.     struct file_system_type ** p;  
  18.   
  19.     BUG_ON(strchr(fs->name, '.'));  
  20.     if (fs->next)  
  21.         return -EBUSY;  
  22.     INIT_LIST_HEAD(&fs->fs_supers);  
  23.     write_lock(&file_systems_lock);  
  24.     /*从system_type链表中查找指定名称的file_system_type*/  
  25.     p = find_filesystem(fs->name, strlen(fs->name));  
  26.     if (*p)  
  27.         res = -EBUSY;  
  28.     else  
  29.         *p = fs;  
  30.     write_unlock(&file_systems_lock);  
  31.     return res;  
  32. }  

根文件系统定义如下

   1. static struct file_system_type rootfs_fs_type = {  
   2.     .name       = "rootfs",  
   3.     .get_sb     = rootfs_get_sb,  
   4.     .kill_sb    = kill_litter_super,  
   5. };  

下面看看他的两个函数

   1. /*获得根目录的sb*/  
   2. static int rootfs_get_sb(struct file_system_type *fs_type,  
   3.     int flags, const char *dev_name, void *data, struct vfsmount *mnt)  
   4. {  
   5.     return get_sb_nodev(fs_type, flags|MS_NOUSER, data, ramfs_fill_super,  
   6.                 mnt);  
   7. }  

   1. int get_sb_nodev(struct file_system_type *fs_type,  
   2.     int flags, void *data,  
   3.     int (*fill_super)(struct super_block *, void *, int),  
   4.     struct vfsmount *mnt)  
   5. {  
   6.     int error;  
   7.     /*获得sb结构*/  
   8.     struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);  
   9.   
  10.     if (IS_ERR(s))  
  11.         return PTR_ERR(s);  
  12.   
  13.     s->s_flags = flags;  
  14.     /*这里实际调用ramfs_fill_super,对sb结构的属性进行设置*/  
  15.     error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);  
  16.     if (error) {  
  17.         deactivate_locked_super(s);  
  18.         return error;  
  19.     }  
  20.     s->s_flags |= MS_ACTIVE;  
  21.     simple_set_mnt(mnt, s);/*设置mnt和sb关联*/  
  22.     return 0;  
  23. }  

   1. /** 
   2.  *  sget    -   find or create a superblock 
   3.  *  @type:  filesystem type superblock should belong to 
   4.  *  @test:  comparison callback 
   5.  *  @set:   setup callback 
   6.  *  @data:  argument to each of them 
   7.  */  
   8.  /*查找或创建一个sb结构*/  
   9. struct super_block *sget(struct file_system_type *type,  
  10.             int (*test)(struct super_block *,void *),  
  11.             int (*set)(struct super_block *,void *),  
  12.             void *data)  
  13. {  
  14.     struct super_block *s = NULL;  
  15.     struct super_block *old;  
  16.     int err;  
  17.   
  18. retry:  
  19.     spin_lock(&sb_lock);  
  20.     if (test) {  
  21.         list_for_each_entry(old, &type->fs_supers, s_instances) {  
  22.             if (!test(old, data))  
  23.                 continue;  
  24.             if (!grab_super(old))  
  25.                 goto retry;  
  26.             if (s) {  
  27.                 up_write(&s->s_umount);  
  28.                 destroy_super(s);  
  29.             }  
  30.             return old;  
  31.         }  
  32.     }  
  33.     if (!s) {/*如果找不到sb,从内存中申请一个*/  
  34.         spin_unlock(&sb_lock);  
  35.         s = alloc_super(type);  
  36.         if (!s)  
  37.             return ERR_PTR(-ENOMEM);  
  38.         goto retry;  
  39.     }  
  40.           
  41.     err = set(s, data);  
  42.     if (err) {  
  43.         spin_unlock(&sb_lock);  
  44.         up_write(&s->s_umount);  
  45.         destroy_super(s);  
  46.         return ERR_PTR(err);  
  47.     }  
  48.     /*初始化得到的sb结构*/  
  49.     s->s_type = type;  
  50.     strlcpy(s->s_id, type->name, sizeof(s->s_id));  
  51.     /*加入链表尾*/  
  52.     list_add_tail(&s->s_list, &super_blocks);  
  53.     list_add(&s->s_instances, &type->fs_supers);  
  54.     spin_unlock(&sb_lock);  
  55.     get_filesystem(type);  
  56.     return s;  
  57. }  

   1. /*所有超级块对象都以双向循环链表的形式链接在一起,量表中第一个 
   2. 元素用super_blocks变量表示,而超级块对象的s_list字段存放指向链表 
   3. 相邻元素的指针*/  
   4. LIST_HEAD(super_blocks);  

   1. /** 
   2.  *  alloc_super -   create new superblock 
   3.  *  @type:  filesystem type superblock should belong to 
   4.  * 
   5.  *  Allocates and initializes a new &struct super_block.  alloc_super() 
   6.  *  returns a pointer new superblock or %NULL if allocation had failed. 
   7.  */  
   8. static struct super_block *alloc_super(struct file_system_type *type)  
   9. {     
  10.     /*从内存中申请sb*/  
  11.     struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);  
  12.     static const struct super_operations default_op;  
  13.   
  14.     if (s) {  
  15.         if (security_sb_alloc(s)) {  
  16.             kfree(s);  
  17.             s = NULL;  
  18.             goto out;  
  19.         }  
  20.         /*初始化*/  
  21.         INIT_LIST_HEAD(&s->s_files);  
  22.         INIT_LIST_HEAD(&s->s_instances);  
  23.         INIT_HLIST_HEAD(&s->s_anon);  
  24.         INIT_LIST_HEAD(&s->s_inodes);  
  25.         INIT_LIST_HEAD(&s->s_dentry_lru);  
  26.         init_rwsem(&s->s_umount);  
  27.         mutex_init(&s->s_lock);  
  28.         lockdep_set_class(&s->s_umount, &type->s_umount_key);  
  29.         /* 
  30.          * The locking rules for s_lock are up to the 
  31.          * filesystem. For example ext3fs has different 
  32.          * lock ordering than usbfs: 
  33.          */  
  34.         lockdep_set_class(&s->s_lock, &type->s_lock_key);  
  35.         /* 
  36.          * sget() can have s_umount recursion. 
  37.          * 
  38.          * When it cannot find a suitable sb, it allocates a new 
  39.          * one (this one), and tries again to find a suitable old 
  40.          * one. 
  41.          * 
  42.          * In case that succeeds, it will acquire the s_umount 
  43.          * lock of the old one. Since these are clearly distrinct 
  44.          * locks, and this object isn't exposed yet, there's no 
  45.          * risk of deadlocks. 
  46.          * 
  47.          * Annotate this by putting this lock in a different 
  48.          * subclass. 
  49.          */  
  50.         down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);  
  51.         s->s_count = S_BIAS;  
  52.         atomic_set(&s->s_active, 1);  
  53.         mutex_init(&s->s_vfs_rename_mutex);  
  54.         mutex_init(&s->s_dquot.dqio_mutex);  
  55.         mutex_init(&s->s_dquot.dqonoff_mutex);  
  56.         init_rwsem(&s->s_dquot.dqptr_sem);  
  57.         init_waitqueue_head(&s->s_wait_unfrozen);  
  58.         s->s_maxbytes = MAX_NON_LFS;  
  59.         s->dq_op = sb_dquot_ops;  
  60.         s->s_qcop = sb_quotactl_ops;  
  61.         s->s_op = &default_op;  
  62.         s->s_time_gran = 1000000000;  
  63.     }  
  64. out:  
  65.     return s;  
  66. }  

kill_litter_super的过程相反,这里不再写了。

构造根目录是由init_mount_tree()函数实现的,该函数在前面已经介绍过了。

2,安装实际根文件系统

关于__setup宏

__setup宏来注册关键字及相关联的处理函数,__setup宏在include/linux/init.h中定义,其原型如下:
__setup(string, _handler);
其中:string是关键字,_handler是关联处理函数。__setup只是告诉内核在启动时输入串中含有string时,内核要去
执行_handler。String必须以“=”符结束以使parse_args更方便解析。紧随“=”后的任何文本都会作为输入传给
_handler。下面的例子来自于init/do_mounts.c,其中root_dev_setup作为处理程序被注册给“root=”关键字:
 __setup("root=", root_dev_setup);

比如我们在启动向参数终有

  noinitrd root=/dev/mtdblock2 console=/linuxrc

 setup_arch解释时会发现root=/dev/mtdblock2,然后它就会调用root_dev_setup

   1. static int __init root_dev_setup(char *line)  
   2. {  
   3.     strlcpy(saved_root_name, line, sizeof(saved_root_name));  
   4.     return 1;  
   5. }  
   6.   
   7. __setup("root=", root_dev_setup);  

Start_kernel->rest_init->init-> prepare_namespace-> 

   1. /* 
   2.  * Prepare the namespace - decide what/where to mount, load ramdisks, etc. 
   3.  */  
   4. void __init prepare_namespace(void)  
   5. {  
   6.     int is_floppy;  
   7.   
   8.     if (root_delay) {  
   9.         printk(KERN_INFO "Waiting %dsec before mounting root device...\n",  
  10.                root_delay);  
  11.         ssleep(root_delay);  
  12.     }  
  13.   
  14.     /* 
  15.      * wait for the known devices to complete their probing 
  16.      * 
  17.      * Note: this is a potential source of long boot delays. 
  18.      * For example, it is not atypical to wait 5 seconds here 
  19.      * for the touchpad of a laptop to initialize. 
  20.      */  
  21.     wait_for_device_probe();  
  22.     /*创建/dev/ram0,必须得,因为initrd要放到/dev/ram0里*/  
  23.     md_run_setup();  
  24.   
  25.     if (saved_root_name[0]) {/*saved_root_name为从启动参数"root"中获取的设备文件名*/  
  26.         root_device_name = saved_root_name;  
  27.         if (!strncmp(root_device_name, "mtd", 3) ||  
  28.             !strncmp(root_device_name, "ubi", 3)) {/*如果设备名开头为这两个*/  
  29.             mount_block_root(root_device_name, root_mountflags);  
  30.             goto out;  
  31.         }  
  32.         /*主设备号和次设备号*/  
  33.         ROOT_DEV = name_to_dev_t(root_device_name);  
  34.         if (strncmp(root_device_name, "/dev/", 5) == 0)  
  35.             root_device_name += 5;/*滤掉'/dev/'字符*/  
  36.     }  
  37.   
  38.     if (initrd_load())  
  39.         goto out;  
  40.   
  41.     /* wait for any asynchronous scanning to complete */  
  42.     if ((ROOT_DEV == 0) && root_wait) {  
  43.         printk(KERN_INFO "Waiting for root device %s...\n",  
  44.             saved_root_name);  
  45.         while (driver_probe_done() != 0 ||  
  46.             (ROOT_DEV = name_to_dev_t(saved_root_name)) == 0)  
  47.             msleep(100);  
  48.         async_synchronize_full();  
  49.     }  
  50.   
  51.     is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;  
  52.   
  53.     if (is_floppy && rd_doload && rd_load_disk(0))  
  54.         ROOT_DEV = Root_RAM0;  
  55.     /*实际操作*/  
  56.     mount_root();  
  57. out:  
  58.     devtmpfs_mount("dev");/*devfs从虚拟的根文件系统的/dev umount*/  
  59.     sys_mount(".", "/", NULL, MS_MOVE, NULL);/*将挂载点从当前目录【/root】(在mount_root函数中设置的)移到根目录*/  
  60.     /*当前目录即【/root】(真正文件系统挂载的目录)做为系统根目录*/  
  61.     sys_chroot(".");  
  62. }  

mount_root操作

   1. void __init mount_root(void)  
   2. {  
   3. #ifdef CONFIG_ROOT_NFS  
   4.     if (MAJOR(ROOT_DEV) == UNNAMED_MAJOR) {  
   5.         if (mount_nfs_root())  
   6.             return;  
   7.   
   8.         printk(KERN_ERR "VFS: Unable to mount root fs via NFS, trying floppy.\n");  
   9.         ROOT_DEV = Root_FD0;  
  10.     }  
  11. #endif  
  12. #ifdef CONFIG_BLK_DEV_FD  
  13.     if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) {  
  14.         /* rd_doload is 2 for a dual initrd/ramload setup */  
  15.         if (rd_doload==2) {  
  16.             if (rd_load_disk(1)) {  
  17.                 ROOT_DEV = Root_RAM1;  
  18.                 root_device_name = NULL;  
  19.             }  
  20.         } else  
  21.             change_floppy("root floppy");  
  22.     }  
  23. #endif  
  24. #ifdef CONFIG_BLOCK/*这里是一般流程*/  
  25.     create_dev("/dev/root", ROOT_DEV);/*用系统调用创建"/dev/root"*/  
  26.     mount_block_root("/dev/root", root_mountflags);  
  27. #endif  
  28. }  

   1. void __init mount_block_root(char *name, int flags)  
   2. {  
   3.     /*从cache中分配空间*/  
   4.     char *fs_names = __getname_gfp(GFP_KERNEL  
   5.         | __GFP_NOTRACK_FALSE_POSITIVE);  
   6.     char *p;  
   7. #ifdef CONFIG_BLOCK  
   8.     char b[BDEVNAME_SIZE];  
   9. #else  
  10.     const char *b = name;  
  11. #endif  
  12.     /*获得文件系统类型,如果在bootoption里有, 
  13.     则就为这个文件系统类型,如果没有指定, 
  14.     则返回ilesytem链上所有类型,下面再对每个进行尝试.*/  
  15.     get_fs_names(fs_names);  
  16. retry:  
  17.     for (p = fs_names; *p; p += strlen(p)+1) {  
  18.         /*实际的安装工作,这里调用了mount系统调用 
  19.         将文件系统挂到/root目录,p为文件系统类型,由get_fs_names得到 
  20.         */  
  21.         int err = do_mount_root(name, p, flags, root_mount_data);  
  22.         switch (err) {  
  23.             case 0:  
  24.                 goto out;  
  25.             case -EACCES:  
  26.                 flags |= MS_RDONLY;  
  27.                 goto retry;  
  28.             case -EINVAL:  
  29.                 continue;  
  30.         }  
  31.             /* 
  32.          * Allow the user to distinguish between failed sys_open 
  33.          * and bad superblock on root device. 
  34.          * and give them a list of the available devices 
  35.          */  
  36. #ifdef CONFIG_BLOCK  
  37.         __bdevname(ROOT_DEV, b);  
  38. #endif  
  39.         printk("VFS: Cannot open root device \"%s\" or %s\n",  
  40.                 root_device_name, b);  
  41.         printk("Please append a correct \"root=\" boot option; here are the available partitions:\n");  
  42.   
  43.         printk_all_partitions();  
  44. #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT  
  45.         printk("DEBUG_BLOCK_EXT_DEVT is enabled, you need to specify "  
  46.                "explicit textual name for \"root=\" boot option.\n");  
  47. #endif  
  48.         panic("VFS: Unable to mount root fs on %s", b);  
  49.     }  
  50.   
  51.     printk("List of all partitions:\n");  
  52.     printk_all_partitions();  
  53.     printk("No filesystem could mount root, tried: ");  
  54.     for (p = fs_names; *p; p += strlen(p)+1)  
  55.         printk(" %s", p);  
  56.     printk("\n");  
  57. #ifdef CONFIG_BLOCK  
  58.     __bdevname(ROOT_DEV, b);  
  59. #endif  
  60.     panic("VFS: Unable to mount root fs on %s", b);  
  61. out:  
  62.     putname(fs_names);  
  63. }  
  64.    

   1. static int __init do_mount_root(char *name, char *fs, int flags, void *data)  
   2. {  
   3.     /*mount系统调用来做实际的安装文件系统工作*/  
   4.     int err = sys_mount(name, "/root", fs, flags, data);  
   5.     if (err)  
   6.         return err;  
   7.     /*改变当前路径到根目录*/  
   8.     sys_chdir("/root");  
   9.     ROOT_DEV = current->fs->pwd.mnt->mnt_sb->s_dev;  
  10.     printk("VFS: Mounted root (%s filesystem)%s on device %u:%u.\n",  
  11.            current->fs->pwd.mnt->mnt_sb->s_type->name,  
  12.            current->fs->pwd.mnt->mnt_sb->s_flags & MS_RDONLY ?  
  13.            " readonly" : "", MAJOR(ROOT_DEV), MINOR(ROOT_DEV));  
  14.     return 0;  
  15. }  

到此,根文件系统的安装过程算是完成了,中间关于mount等系统调用将在后面分析。可以看出总的步骤主要有:

1,创建一个rootfs,这个是虚拟的rootfs,是内存文件系统(和ramfs),后面还会指向具体的根文件系统;

2,从系统启动参数中获取设备文件名以及设备号;

3,调用系统调用创建符号链接,并调用mount系统调用进程实际的安装操作;

4,改变进程当前目录;

5,移动rootfs文件系统根目录上得已经安装文件系统的安装点;
rootfs特殊文件系统没有被卸载,他只是隐藏在基于磁盘的根文件系统下了。



你可能感兴趣的:(linux,list,struct,File,System,asynchronous)