3D数学 ---- 矩阵的更多知识(3)

3D数学 ---- 矩阵的更多知识(3)

 

正交矩阵的运算法则

若方阵M是正交的,则当且仅当M与它转置矩阵MT的乘积等于单位矩阵,见公式9.8:

矩阵乘以它的逆等于单位矩阵:M M-1 = I

所以,如果一个矩阵是正交的,那么它的转置等于它的逆:

这是一条非常有用的性质,因为在实际应用中经常需要计算矩阵的逆,而3D图形计算中正交矩阵出现又是如此频繁。比如旋转和镜像矩阵是正交的,如果知道矩阵是正交的,就可以完全避免计算逆矩阵了,这也将大大减少计算量。

 

正交矩阵的几何解释

正交矩阵对我们非常有用,因为很容易计算它的逆矩阵。但怎样知道一个矩阵是否正交,以利用它的性质呢?

很多情况下,我们可以提前知道矩阵是如何建立的,甚至了解矩阵是仅包含旋转、镜像呢,还是二者皆有(记住:旋转和镜像矩阵是正交的)。这种情况非常普遍。

如果无法提前清楚矩阵的某些情况呢?换句话说,对于任意矩阵M,怎样检测它是否正交?为了做到这一点,让我们从正交矩阵的定义开始,以3x3阶矩阵为例。设M是3x3矩阵,根据定义,当且仅当 M MT = IM是正交的。它的确切含义如下:

3D数学 ---- 矩阵的更多知识(3)_第1张图片

现在做一些解释:

(1)当且仅当一个向量是单位向量时,它与自身的点积结果是1。因此,仅当r1r2r3是单位向量时,第1、5、9式才能成立。

(2)当且仅当两个向量是互相垂直时,它们的点积为0。因此,仅当r1r2r3互相垂直时其他等式才成立。

所以,若一个矩阵是正交的,它必须满足下列条件:

矩阵的每一行都是单位向量,矩阵的所有行互相垂直。

对矩阵的列也能得到类似的条件,这使得以下结论非常清楚:如果M是正交的,则MT也是正交的。

计算逆矩阵时,仅在预先知道矩阵是正交的情况下才能利用正交性的优点。如果预先不知道,那么检查正交性经常是浪费时间。即使在最好的情况下,先检查正交性以确定矩阵是否正交再进行转置,和一开始就进行求逆运算也将耗费同样多的时间。而如果矩阵不是正交,那么这种检查完全是浪费时间。

注意,有一个术语上的差别可能会导致轻微的混淆。线性代数中,如果一组向量互相垂直,这组向量就被认为是正交基(orthogonal basis)。它只要求所有向量互相垂直,并不要求所有向量都是单位向量。如果它们都是单位向量,则称它们为标准正交基(orthogonal basis)。这里所讲的正交矩阵的行或列向量都是指标准正交基向量(orthogonal basis vectors),所以由一组正交基向量构造的矩阵并不一定是正交矩阵(除非基向量是标准正交的)。

 

矩阵正交化

有时可能会遇到略微违反了正交性的矩阵。例如,可能从外部得到了坏数据,或者是浮点运算的累积错误(称作”矩阵爬行“)。这些情况下,需要做矩阵正交化,得到一个正交矩阵,这个矩阵要尽可能地和原矩阵相同(至少希望是这样)。

构造一组正交基向量(矩阵的行)的标准算法是施密特正交化。它的基本思想是,对每一行,从中减去它平行于已处理过的行的部分,最后得到垂直向量。

以3x3矩阵为例,和以前一样,用r1r2r3代表3x3阶矩阵M的行。正交向量组r1'r2'r3'的计算如公式9.9所示:

3D数学 ---- 矩阵的更多知识(3)_第2张图片

现在r1'r2'r3'互相垂直了,它们是一组正交基。当然,它们不一定是单位向量。构造正交矩阵需要使用标准正交基,所以必须标准化这些向量。注意,如果一开始就进行标准化,而不是在第2步中做,就能避免所有除法了。

施密特正交化是有偏差的,这取决于基向量列出的顺序。一个明显的例子是,r1总不用改变。该算法的一个改进是不在一次正交化过程中将整个矩阵完全正交化。而是选择一个小的因子k,每次只减去投影的k倍,而不是一次将投影全部减去。改进还体现在,在最初的轴上也减去投影。这种方法避免了因为运算顺序不同带来的误差。算法总结如下:

3D数学 ---- 矩阵的更多知识(3)_第3张图片

该算法的每次迭代都会使这些基向量比原来的基向量更为正交化,但可能不是完全正交的,多次重复这个过程,最终将得到一组正交基。要得到完美的结果,就得选择一个适当的因子k并迭代足够多次(如:10次)。接着,进行标准化,最后就会得到一组正交基。


你可能感兴趣的:(3D数学 ---- 矩阵的更多知识(3))