- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- 356. 次小生成树(LCA倍增算法,换边)
Landing_on_Mars
#最近公共祖先算法图论
356.次小生成树-AcWing题库给定一张N个点M条边的无向图,求无向图的严格次小生成树。设最小生成树的边权之和为sum,严格次小生成树就是指边权之和大于sum的生成树中最小的一个。输入格式第一行包含两个整数N和M。接下来M行,每行包含三个整数x,y,z,表示点x和点y之前存在一条边,边的权值为z。输出格式包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)数据范围
- 数据结构—图(下)
Voltline
数据结构与算法数据结构算法图论图搜索算法
文章目录12.图(下)(4).生成树和最小生成树#1.什么是生成树和最小生成树?i.生成树ii.最小生成树#2.Prim算法i.算法思想ii.看看例子iii.代码实现#3.Kruskal算法i.算法思想ii.看看例子iii.代码实现#4.次小生成树(5).最短路径问题#1.加权有向图的最短路径问题#2.单源最短路径问题—Dijkstra算法i.基本实现方法ii.优先队列优化方法#3.多源最短路径问
- 图 算法 大总结
Phil_jida
吉大数据结构复习算法数据结构
文章目录概念以及基本算法实现重难点最小生成树相关算法kruskal基本算法求最小生成树kruskal进阶算法1加入新边求最小生成树kruskal进阶算法2求次小生成树kruskal进阶算法3判断最小生成树是否唯一红皮书图算法1、设有向图G(V,E)采用领结表存储,节点集为1到n的整数G(V)={1,2,…,n},边的数量为e,设计一个算法,计算G中所有顶点的入度,结果存放在一维数组中2、自由数(无
- BZOJ-1977: [BeiJing2010组队]次小生成树 Tree(MST+树上倍增)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1977有种很显然的做法:先MST,然后枚举每一条非树边(s,t),将s,t在MST上对应的路径上找出一条严格小于(s,t)权值且最大的边,然后把(s,t)替换进去,最终可以得到严格次小生成树。明显直接O(n^2)暴力会跪,瓶颈失求树上路径最大边,那么就用树上倍增(OrzCLJ神牛的类Tarjan
- 次小生成树—学习笔记
niiick
LCA倍增算法
次小生成树分为非严格次小生成树和严格次小生成树对于前者,若最小生成树不唯一则次小生成树与最小生成树权值相同对于后者,则要求次小生成树权值严格大于最小生成树接下来的求解方法都将分别讨论这里是次小生成树的版题洛谷P4180严格次小生成树[BJWC2010]算法一:这一算法较简洁易懂,且代码量小但算法时间复杂度较高,一般不建议用,了解思路即可效率较高的算法参见算法二首先,不难证明次小生成树的连边与最小生
- 次小生成树学习笔记
拧错位置的螺丝钉
#图论图论
次小生成树有严格次小生成树和非严格次小生成树之分。常见的是严格次小生成树。严格次小生成树的定义如下:如果最小生成树选择的边集是EME_MEM,严格次小生成树选择的边集是ESE_SES,那么需要满足:(value(e)value(e)value(e)表示边eee的权值)∑e∈EMvalue(e)g1(i+2j−1,j−1)g_1(i,j-1)>g_1(i+2^{j-1},j-1)g1(i,j−1)>
- 树上倍增
Loboqui
无论如何跟着father更新,如果讨论麻烦请重载,尽管常数有点大严格次小生成树#includeusingnamespacestd;#defineintlonglonginlinechargc(){staticconstintN=1'9')c=='-'&&(n=1),c=gc();while(c>='0'&&c1?temp[m-2]:0};}};structEdge{intu,v,w;boolope
- 次小生成树 O(V^2)
千秋TʌT
算法
|次小生成树O(V^2)\*==================================================*/结论次小生成树可由最小生成树换一条边得到.证明:可以证明下面一个强一些的结论:T是某一棵最小生成树,T0是任一棵异于T的树,通过变换T0-->T1-->T2-->...-->Tn(T)变成最小生成树.所谓的变换是,每次把T_i中的某条边换成T中的一条边,而且树T_(i
- HDU 4786 图论之最短路
Dan__ge
最短路图论线段树图论ACMhdu最短路
点击打开链接题意:问有没有一个生成树的权值之和是斐波那契中的值思路:分别求一次最大生成树权值和为max1和最小生成树权值和min1,如果不能生成一个树,直接输出No,不然判断min1到max1中有没有斐波那契数就行了,至于为什么可以,我感觉我队友说的比较有道理,最小生成树可以加一条边然后删一条边生成次小生成树,依次类推,我们可以用次小生成树在生成一个次小次小生成树,一直可以推到最大生成树,所以中间
- 【图论】最小生成树
Texcavator
图论图论算法
(算法基础+提高课笔记文章目录基本方法Kruskal算法步骤与基本思路Kruskal板子Prim算法步骤与基本思路Prim板子理论基础最小生成树次小生成树基础应用最短网络题意思路代码局域网题意思路代码繁忙的都市题意思路代码连接格点题意思路代码拓展应用新的开始题意思路代码北极通讯网络题意思路代码走廊泼水节题意思路代码秘密的牛奶运输题意思路代码基本方法Kruskal算法步骤与基本思路(1)初始化所有点
- 第三章 图论 No.8最近公共祖先lca, tarjan与次小生成树
.SacaJawea
AcWing算法提高课课程记录图论算法
文章目录lcaTarjan板子题:1172.祖孙询问lca或tarjan:1171.距离356.次小生成树352.闇の連鎖lcaO(mlogn)O(mlogn)O(mlogn),n为节点数量,m为询问次数,lca是一种在线处理询问的算法自己也是自己的祖先倍增:fa(i,j)fa(i,j)fa(i,j)表示从i开始,向上走2j2^j2j步走到的点j=0,走到父节点j>0,分两步走,先走到2j−12^
- 第三章 图论 No.5最小生成树之虚拟源点,完全图与次小生成树
.SacaJawea
AcWing算法提高课课程记录图论算法
文章目录虚拟源点:1146.新的开始贪心或kruskal性质:1145.北极通讯网络最小生成树与完全图:346.走廊泼水节次小生成树:1148.秘密的牛奶运输虚拟源点:1146.新的开始1146.新的开始-AcWing题库与一般的最小生成树问题不同,本题需要在建立电站的电井之间建立电网,在两个电站之间建立电网需要花费金额,可以看成一条具有权值的边但是建立电网的前提是:其中一个电井需要建立电站,建立
- 知识点:次小生成树
塔子哥来了嗷
1.非严格次小生成树结论:非严格次小生成树与MST只差一条边.做法:求出MST。对于每一条不在生成树的边,加入到树中一定会成环.那么删除除该边以外最大权值的边.得到新的价值,.具体算法:1.跑一遍kursal算法。得到MST的价值V2.对MST跑倍增算法,维护k级祖先以及到其的最大边权.3.对于每一条不在MST的边E.查询两个点(u,v)之间的最大值res(这个可以在求LCA的过程中求得).得到新
- 《算法竞赛进阶指南》------图论篇2
axtices
图论图论算法
文章目录0x0E雨天的尾巴洛谷p4556(线段树合并+树上差分+树链lca)0x0FCF600ELomsatgelral(线段树合并)0x10天天爱跑步NOIP2016P1600(树链LCA和树上差分)0x11异象石Acwing(树链LCA+时间戳)0x12次小生成树(倍增LCA+路径上权值最大和次大的保存)0x13疫情控制(倍增LCA+思维+根到叶子检查点)0x0E雨天的尾巴洛谷p4556(线段
- 需要记忆的算法
一曲诉哀愁
大一算法学习c++算法数据结构
次小生成树先生成最小生成树,再预处理出两点之间的最大边权,枚举非树边,替换两点之中的最大边,得到最小的sum+w−dist[a][b]sum+w-dist[a][b]sum+w−dist[a][b]。非严格的次小生成树,可以只记录最大边,要生成严格的次小生成树,需要记录最大边和次大边,防止两点之间最大边权等于非树边导致无法替换的情况。//严格次小生成树#includeusingnamespaces
- 次小生成树
你A你的 我WA我的
图论
最小生成树的唯一性Description给定一个带权无向图,如果是连通图,则至少存在一棵最小生成树,有时最小生成树并不唯一。本题就要求你计算最小生成树的总权重,并且判断其是否唯一。Input首先第一行给出两个整数:无向图中顶点数N(≤500)和边数M。随后M行,每行给出一条边的两个端点和权重,格式为“顶点1顶点2权重”,其中顶点从1到N编号,权重为正整数。题目保证最小生成树的总权重不会超过230。
- 【次小生成树】4.秘密的牛奶运输
致命小学期
算法题蓝桥杯职场和发展
题目描述FarmerJohn要把他的牛奶运输到各个销售点。运输过程中,可以先把牛奶运输到一些销售点,再由这些销售点分别运输到其他销售点。运输的总距离越小,运输的成本也就越低。FarmerJohn期望低成本的运输,但他并不想让他的竞争对手知道他具体的运输方案,所以他希望采用费用第二小的运输方案而不是最小的。现在请你帮忙找到该运输方案。输入格式第一行是两个整数N,M,表示顶点数和边数;接下来M行每行3
- MangataのACM模板
MangataTS
算法教学图论数据结构算法c++c语言
文章目录数据结构并查集树状数组二维单点修改,区间查询线段树单点修改,区间查询区间更新、区间查询主席树(区间第k小数模板)单调栈单调队列Trie树01Trie树图论最短路迪杰斯特拉(堆优化+链式前向星)最短路径计数最小生成树kruskalprim次小生成树非严格次小生成树prime+dpO(V^2)方法二:倍增+kruskalO(MlogN)严格次小生成树倍增:O(mlogm)LCA倍增模板:O(n
- 刷题周记(七.2)—— #FHQtremp(平衡树) 、#次小生成树 、#LCA(最近公共祖先)
Yuan Yulin
学习心得
文章目录——2021年04月04日(周日)——2021年04月05日(周一)——2021年04月06日(周二)——2021年04月07日(周三)——2021年04月10日(周六)——2021年04月04日(周日)肝平衡树(失败)……——2021年04月05日(周一)肝平衡树(失败)……——2021年04月06日(周二)肝平衡树(失败)……——2021年04月07日(周三)基本能理解split和me
- 最小生成树&&次小生成树
Stayaccept
图论及应用の读书笔记图论及应用の读书笔记
对于一个边上具有权值的图来说,其边权值和最小的生成树叫做图G的最小生成树求无向图最小生成树主要有prim和kruskal两种算法1.prim将点集V分成Va和Vb两部分,Va为已经连入生成树的点,Vb为没有连入的点,按照边的大小逐渐向Va中加点,直到Va中包含所有点,具体步骤,复杂度O(mlogn)⑴.首先初始化生成树的权值为0,任选一点放入Va,其余点放入Vb⑵.在Vb中找一点u,在Va中找一点
- BZOJ1997——次小生成树(严格次小生成树)
Stargazer.
传送门次小生成树什么的就不想讲了这儿有个神仙的讲解我只需要贴代码就是了#includeusingnamespacestd;#definelllonglonginlineintread(){charch=getchar();intres=0;while(!isdigit(ch))ch=getchar();while(isdigit(ch))res=(res=1=0;i--){if(del>=(1=0
- 次小生成树模板-prim算法
YYyyCCCcccBb
最小生成树acm
prim算法的次小生成树构造:与原版求最小生成树的prim算法相比,在求解次小生成树时加入了maxx这个数组,也是最为核心的一个,以及一个connect数组下面重点说一下这两个新的内容。connect数组,标志这connect[i][j]从i到j有边,(这个在输入的时候就可以处理),其次,我们在求解最小生成树时候index点,也是这步需要添加到已经遍历到树中的点。我们可以用一个father数组记录
- 【BZOJ1977】次小生成树 Tree
sszxzzh
次小生成树BZOJ
1977:[BeiJing2010组队]次小生成树TreeTimeLimit:10SecMemoryLimit:512MBSubmit:3916Solved:1133Description小C最近学了很多最小生成树的算法,Prim算法、Kurskal算法、消圈算法等等。正当小C洋洋得意之时,小P又来泼小C冷水了。小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说
- 洛谷 P4180 【模板】严格次小生成树[BJWC2010] LCT
EM-LGH
首次采用了压行,感觉还不错。Code://luogu-judger-enable-o2#include#include#include#includeusingnamespacestd;voidsetIO(stringa){freopen((a+".in").c_str(),"r",stdin);//freopen((a+".out").c_str(),"w",stdout);}#definein
- 严格次小生成树(LCA法)
JK Chen
图论/搜索
originallink-https://www.luogu.org/problem/P4180题意:给出一个图,求严格次小生成树,即边权和严格小于MSTMSTMST。解析:定理:若存在次小生成树,则必然存在一个次小生成树与MSTMSTMST只有一条边的差异。所以我们先做一遍MSTMSTMST,然后去判断每条边加进去后的情况。显然加进去后形成一个环,要在环上原来的边中删除一条边(若边为(a,b)(
- 次小生成树
LiWen_7
关于程序图论
给出一个带边权的无向图G,设其最小生成树为T,求出图G的与T不完全相同的边权和最小的生成树(即G的次小生成树)。一个无向图的两棵生成树不完全相同,当且仅当这两棵树中至少有一条边不同。注意,图G可能不连通,可能有平行边,但一定没有自环(其实对于自环也很好处理:直接舍弃。因为生成树中不可能出现自环)。【具体题目】URAL1416(注意,这一题的边数M的范围没有给出,视为124750)【分析】定义生成树
- 最小生成树
第25小时
目录最小生成树1.算法分析2.板子2.1prime算法2.2kruskal算法3.典型例题3.1同时有点权和边权的最小生成树3.2选定边集最小生成树3.3最大边最小--生成树/森林3.4最优比率生成树3.5寻找存在于所有最小生成树的边3.6最小生成树恢复成完全图3.7最小生成森林3.8最短路径树3.8.1求最短路径树的数目3.8.2最短路径树必经边3.9次小生成树最小生成树1.算法分析mst性质最
- 最小瓶颈路与次小生成树
vufw_795
算法图论UVA
简介:最小生成树是图论里面一类经典问题,可以有很多种变形,其中最小瓶颈路和次小生成树就是两种比较经典的变形。最小瓶颈路就是在两个结点之间求一条最长边最短的路径,而次小生成树则是所有生成树中权值排名第二的生成树(可以和最小生成树相等)。下面我们分别来看看这两个问题。最小瓶颈路:给定一个加权无向图,并给定无向图中两个结点u和v,求u到v的一条路径,使得路径上边的最大权值最小。这个问题可以稍微加强一下,
- 次小生成树(krusal+prim)
肘子zhouzi
最小生成树
定义:设G=(V,E)是连通的无向图,T是图G的一个最小生成树.如果有另外一棵树T1,T1≠T,满足不存在树T',T'≠T,w(T')和的每两个点之间的距离应该都更新为7,即length[3][2]=length[3][1]=length[3][4]=length[3][6]=8,length[5][2]=length[5][1]=length[5][4]=length[5][6]=7,每增加一条
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持