[转]float在计算机中的存储

转自 http://blog.csdn.net/guqsir/article/details/7015267

        浮点型变量在计算机内存中占用4字节(Byte),即32-bit。遵循IEEE-754格式标准。

        一个浮点数由2部分组成:底数m 和 指数e。
          ±mantissa × 2exponent
        (注意,公式中的mantissa 和 exponent使用二进制表示)
        底数部分 使用2进制数来表示此浮点数的实际值。
        指数部分 占用8-bit的二进制数,可表示数值范围为0-255。

        但是指数应可正可负,所以IEEE规定,此处算出的次方须减去127才是真正的指数。所以float的指数可从 -126到128.

        底数部分实际是占用24-bit的一个值,由于其最高位始终为 1 ,所以最高位省去不存储,在存储中只有23-bit。(按照规定,底数是大于1小于2的二进制数,所以最高位始终为1)

        到目前为止, 底数部分 23位 加上指数部分 8位 使用了31位。那么前面说过,float是占用4个字节即32-bit,那么还有一位是干嘛用的呢? 还有一位,其实就是4字节中的最高位,用来指示浮点数的正负,当最高位是1时,为负数,最高位是0时,为正数。


        浮点数据就是按下表的格式存储在4个字节中:
        Address+0 Address+1 Address+2 Address+3
        Contents SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM S: 表示浮点数正负,1为负数,0为正数


        E: 指数加上127后的值的二进制数
        M: 24-bit的底数(只存储23-bit)

        注意:这里有个特例,浮点数 为0时,指数和底数都为0,但此前的公式不成立。
        因为2的0次方为1,所以,0是个特例。当然,这个特例也不用认为去干扰,编译器会自动去识别。



        通过上面的格式,我们下面举例看下-12.5在计算机中存储的具体数据:
        Address+0 Address+1 Address+2 Address+3
        Contents 0xC1 0x48 0x00 0x00 接下来我们验证下上面的数据表示的到底是不是-12.5,从而也看下它的转换过程。
        由于浮点数不是以直接格式存储,他有几部分组成,所以要转换浮点数,首先要把各部分的值分离出来。

        Address+0 Address+1 Address+2 Address+3
        格式 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
        二进制 11000001 01001000 00000000 00000000
        16进制 C1 48 00 00

        可见:
        S: 为1,是个负数。
        E:为 10000010 转为10进制为130,130-127=3,即实际指数部分为3.
        M:为 10010000000000000000000。 这里,在底数左边省略存储了一个1,使用 实际底数表示为 1.10010000000000000000000
        到此,我们吧三个部分的值都拎出来了,现在,我们通过指数部分E的值来调整底数部分M的值。

        调整方法为:如果指数E为负数,底数的小数点向左移,如果指数E为正数,底数的小数点向右移。小数点移动的位数由指数E的绝对值决定。
        这里,E为正3,使用向右移3为即得:
        1100.10000000000000000000
        至次,这个结果就是12.5的二进制浮点数,将他换算成10进制数就看到12.5了,

        如何转换,看下面:

        小数点左边的1100 表示为 (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20), 其结果为 12 。
        小数点右边的 .100… 表示为 (1 × 2-1) + (0 × 2-2) + (0 × 2-3) + ... ,其结果为.5 。
        以上二值的和为12.5, 由于S 为1,使用为负数,即-12.5 。
        所以,16进制 0XC1480000 是浮点数 -12.5 。

        上面是如何将计算机存储中的二进制数如何转换成实际浮点数,下面看下如何将一浮点数装换成计算机存储格式中的二进制数。
        举例将17.625换算成 float型。
        首先,将17.625换算成二进制位:10001.101 ( 0.625 = 0.5+0.125, 0.5即 1/2, 0.125即 1/8 如果不会将小数部分转换成二进制,请参考其他书籍。)

        再将 10001.101 向右移,直到小数点前只剩一位 成了 1.0001101 x 2的4次方(因为右移了4位)。此时 我们的底数M和指数E就出来了:
        底数部分M,因为小数点前必为1,所以IEEE规定只记录小数点后的就好,所以此处底数为 0001101 。
        指数部分E,实际为4,但须加上127,固为131,即二进制数 10000011
        符号部分S,由于是正数,所以S为0.
        综上所述,17.625的 float 存储格式就是:
        0 10000011 00011010000000000000000
        转换成16进制:0x41 8D 00 00
        所以,一看,还是占用了4个字节。

你可能感兴趣的:(float)