tarjan 离线求 lca (专题)

离线LCA的求法,相信大家都知道使用tarjan。该方法确实很巧妙,利用dfs的性质,假设u的父亲为fa,当以u为根节点的子树被访问完之后,那么任何与u同属于同一个父亲fa并且不包含在u的子树内的点,与u子树内的任何一个点的最近公共祖先一定是fa,我们使用并查集维护同属一个ancestor的定点集合。


HDU 2586 How Far Away?

这道题是说给你一棵树,询问任意两点之间的最短距离。

显然dis[u][v] = (dep[u] - dep[lca]) + (dep[v] - dep[lca]),其中dep[u]表示u点到root的距离。

于是先dfs预处理dep数组,然后使用tarjan离线求解u and v之间的lca,并且记录结果。

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;

const int NMAX = 40010;

typedef struct NODE
{
	int v, dis;
	NODE(int tv, int tdis)
	{
		v = tv;
		dis = tdis;
	}
}Node;

vector<Node> adj[NMAX];

typedef struct QUERY_NODE
{
	int v, index;
	QUERY_NODE(int tv, int tindex)
	{
		v = tv;
		index = tindex;
	}

}QueryNode;

vector<QueryNode> query[NMAX];

int ancestor[NMAX];
int tree[NMAX];
bool vis[NMAX];
int dep[NMAX];

int find(int u)
{
	int r = u;
	while(tree[r] != r)
	{
		r = tree[r];
	}

	while(u != r)
	{
		int temp = tree[u];
		tree[u] = r;
		u = temp;
	}
	return r;
}

void init()
{
	memset(vis, false, sizeof(vis));
	for(int i=0; i<NMAX; i++)
	{
		adj[i].clear();
		query[i].clear();
	}
}

void tarjan(int fa, int u)
{
	tree[u] = u;
	//vis[u] = true;
	int len = adj[u].size();
	for(int i=0; i<len; i++)
	{
		int v = adj[u][i].v;
		if(v != fa)
		{
			tarjan(u, v);
			tree[find(v)] = u;
		}
	}

	vis[u] = true;

	len = query[u].size();
	for(int i=0; i<len; i++)
	{
		int v = query[u][i].v;
		int index = query[u][i].index;
		if(vis[v])
		{
			ancestor[index] = find(v);
			int lca = ancestor[index];
			ancestor[index] = (dep[u]-dep[lca]) + (dep[v] - dep[lca]);
			//printf("%d %d %d %d\n", u, v, lca, ancestor[index]);
		}
	}
}

int getDis(int fa, int u)
{
	int len = adj[u].size();
	for(int i=0; i<len; i++)
	{
		int v = adj[u][i].v;
		int dis = adj[u][i].dis;
		if(v != fa)
		{
			dep[v] = dep[u] + dis;
			getDis(u, v);
		}
	}
}

int main()
{
	//freopen("data.in", "r", stdin);
	int T;
	scanf("%d", &T);
	
	int n, k;
	while(T--)
	{
		scanf("%d%d", &n, &k);
		init();
		int u, v, w;
		for(int i=1; i<n; i++)
		{
			scanf("%d%d%d", &u, &v, &w);
			adj[u].push_back(Node(v, w));
			adj[v].push_back(Node(u, w));
		}
		for(int i=0; i<k; i++)
		{
			scanf("%d%d", &u, &v);
			query[u].push_back(QueryNode(v, i));
			query[v].push_back(QueryNode(u, i));
		}

		memset(dep, 0, sizeof(dep));

		getDis(-1, 1);
		tarjan(-1, 1);
		for(int i=0; i<k; i++)
			printf("%d\n", ancestor[i]);
	}
	return 0;
}

HDU 2874 connections between cities

这道题何上一题差不多,题意是说:给了你很多棵树,询问任意两点:如果不在同一棵树,那么输出not connected;否则输出两点之间的距离,和上一题做法一样。

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;

const int NMAX = 10010;

typedef struct NODE
{
	int v, dis;
	NODE(int tv, int tdis)
	{
		v = tv;
		dis = tdis;
	}
}Node;

vector<Node> adj[NMAX];

typedef struct QUERY_NODE
{
	int v, index;
	QUERY_NODE(int tv, int tindex)
	{
		v = tv;
		index = tindex;
	}

}QueryNode;

vector<QueryNode> query[NMAX];

int ancestor[1000006];
int tree[NMAX];
bool vis[NMAX], visited[NMAX];
int dep[NMAX];

int find(int u)
{
	int r = u;
	while(tree[r] != r)
	{
		r = tree[r];
	}

	while(u != r)
	{
		int temp = tree[u];
		tree[u] = r;
		u = temp;
	}
	return r;
}

void init()
{
	memset(visited, false, sizeof(visited));
	for(int i=0; i<NMAX; i++)
	{
		adj[i].clear();
		query[i].clear();
	}
}

void tarjan(int fa, int u)
{
	visited[u] = true;

	tree[u] = u;
	int len = adj[u].size();
	for(int i=0; i<len; i++)
	{
		int v = adj[u][i].v;
		if(v != fa)
		{
			tarjan(u, v);
			tree[find(v)] = u;
		}
	}

	vis[u] = true;

	len = query[u].size();
	for(int i=0; i<len; i++)
	{
		int v = query[u][i].v;
		int index = query[u][i].index;
		if(vis[v])
		{
			ancestor[index] = find(v);
			int lca = ancestor[index];
			ancestor[index] = (dep[u]-dep[lca]) + (dep[v] - dep[lca]);
			//printf("%d %d %d %d\n", u, v, lca, ancestor[index]);
		}
	}
}

int getDis(int fa, int u)
{
	int len = adj[u].size();
	for(int i=0; i<len; i++)
	{
		int v = adj[u][i].v;
		int dis = adj[u][i].dis;
		if(v != fa)
		{
			dep[v] = dep[u] + dis;
			getDis(u, v);
		}
	}
}

int main()
{
	//freopen("data.in", "r", stdin);
	
	int n, m, k;
	while(scanf("%d%d%d", &n, &m, &k) != EOF)
	{
		init();
		int u, v, w;
		for(int i=0; i<m; i++)
		{
			scanf("%d%d%d", &u, &v, &w);
			adj[u].push_back(Node(v, w));
			adj[v].push_back(Node(u, w));
		}
		for(int i=0; i<k; i++)
		{
			scanf("%d%d", &u, &v);
			query[u].push_back(QueryNode(v, i));
			query[v].push_back(QueryNode(u, i));
		}

		memset(dep, 0, sizeof(dep));
		memset(ancestor, -1, sizeof(ancestor));

		for(int i=1; i<=n; i++)
		{
			if(!visited[i])
			{
				memset(vis, false, sizeof(vis));
				getDis(-1, i);
				tarjan(-1, i);
			}
		}
		for(int i=0; i<k; i++)
		{
			if(ancestor[i] == -1)
				printf("Not connected\n");
			else
				printf("%d\n", ancestor[i]);
		}
	}
	return 0;
}

HDU 4547 CD操作

这道大水题,被坑爹了。输入的查询中存在之前目录中没有出现的点,然后就是输入肯定是保证这两个没有出现过的点相同,所以初始化的时候将答案全初始化为0就行了。

坑爹了……

奉上代码吧。

#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <map>
using namespace std;

const int MAX = 100010;

vector<int> adj[MAX];
vector<int> queryid[MAX];
int dep[MAX], ans[MAX];
bool vis[MAX];

typedef struct QUERY
{
	int a, b;
	QUERY(){}
	QUERY(int ta, int tb)
	{
		a = ta;
		b = tb;
	}
}Query;

Query query[MAX];

map<string, int> hash_name;
void tarjan(int root);

void init(int n, int m)
{
	memset(vis, false, sizeof(vis));
	hash_name.clear();
	for(int i=1; i<MAX; i++)
	{
		adj[i].clear();
		queryid[i].clear();
	}
	
	char sa[50], sb[50];
	int cnt = 0;
	int u, v;
	for(int i=1; i<n; i++)
	{
		scanf("%s %s", sa, sb);
		if(hash_name[sa] == 0)
			hash_name[sa] = ++cnt;
		u = hash_name[sa];
		if(hash_name[sb] == 0)
			hash_name[sb] = ++cnt;
		v = hash_name[sb];
		adj[v].push_back(u);
		vis[u] = true;
	}

	for(int i=0; i<m; i++)
	{
		scanf("%s %s", sa, sb);
		if(hash_name[sa] == 0)
			hash_name[sa] = ++cnt;
		u = hash_name[sa];
		if(hash_name[sb] == 0)
			hash_name[sb] = ++cnt;
		v = hash_name[sb];
		query[i] = Query(u, v);
		queryid[u].push_back(i);
		queryid[v].push_back(i);
	}

	
	memset(ans, 0, sizeof(ans));
	int root;
	for(int i=1; i<=n; i++)
	{
		if(!vis[i])
		{
			root = i;
			break;
		}
	}
	memset(vis, false, sizeof(vis));
	tarjan(root);
}

int tree[MAX];
int find(int u)
{
	int root = u;
	while(tree[root] != root)
		root = tree[root];
	while(u != root)
	{
		int temp = tree[u];
		tree[u] = root;
		u = temp;
	}
	return root;
}

void tarjan(int u)
{
	int len = adj[u].size();
	tree[u] = u;
	for(int i=0; i<len; i++)
	{
		int v = adj[u][i];
		dep[v] = dep[u]+1;
		tarjan(v);
		tree[find(v)] = u;
	}
	vis[u] = true;

	len = queryid[u].size();
	for(int i=0; i<len; i++)
	{
		int id = queryid[u][i];
		int a = query[id].a;
		int b = query[id].b;

		int lca;
		if(u == a)
			lca = find(b);
		else
			lca = find(a);
		ans[id] = dep[a] - dep[lca];
		if(lca != b)
			ans[id]++;
	}
}

int main()
{
	int T;
	scanf("%d", &T);
	while(T--)
	{
		int n, m;
		scanf("%d%d", &n, &m);
	
		init(n, m);

		for(int i=0; i<m; i++)
			printf("%d\n", ans[i]);
	}
	return 0;
}


你可能感兴趣的:(tarjan 离线求 lca (专题))