- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 一起学语文:一文告诉你高中如何记笔记效率最高?
一起学语文
本文主要是两个部分:一是如何记笔记,分为目的、记什么、误区、小技巧;二是如何归纳整理,分为整理知识体系的四个问题、不同级别的人怎样整理、常见的归纳整理方法。最后推荐康奈尔笔记法及语文学科的思维导图。记笔记的目的1.记忆记笔记最基本的一个作用,就是再一次加深你对内容的记忆。古人也说“手抄一遍,胜读十遍”不是没道理的,在我们运用多种感知器官同时投入识记的效果好,而多种感知又以手到为佳。2.复习便于阶段
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 1.人工智能原理
luckyflyyy
人工智能基础学习人工智能python机器学习深度学习
一元一次函数感知器–如何描述直觉MCCulloch-Pitts神经元模型MCCulloch-Pitts神经元模型(McCulloch-PittsNeuronModel)是一种简化的人工神经元模型,由美国心理学家沃伦·麦卡洛克(WarrenMcCulloch)和逻辑学家沃尔特·皮茨(WalterPitts)于1943年提出。这个模型是神经网络和计算神经科学领域的一个重要里程碑,为后来的神经网络研究奠
- Spark MLlib模型训练—分类算法Multilayer Perceptron Classifier
猫猫姐
Spark实战spark-mlspark机器学习
SparkMLlib模型训练—分类算法MultilayerPerceptronClassifierMultilayerPerceptronClassifier(多层感知器分类器,简称MLP)是SparkMLlib中用于分类任务的神经网络模型。MLP是一种前馈神经网络(FeedforwardNeuralNetwork),其架构由输入层、隐藏层和输出层组成。MLP通过反向传播算法(Backpropag
- 销售话术对成单有啥影响
wxl781227
深度学习算法人工智能机器学习
坐席说了哪些话对成单有影响?咱们通常认为客户不需要时,坐席说了一些话会影响成单,那么我们就把这些话和成单之间建立一个映射关系。怎么建立这个关系呢?我们通过一个神经网络来拟合这么个关系,即需要用数据去训练一个神经网络模型(成单概率模型),我们可以使用MLP来实现,MLP是一个多层感知器,能够轻松的模拟输入(坐席说的话)和输出(成单)之间的非线性关系(复杂关系)。实际上就是去训练一个分类器来判断:坐席
- 机器学习12-基本感知器
dracularking
机器学习机器学习人工智能感知器Perceptron
感知器(Perceptron)是一种最简单的人工神经网络结构,由美国心理学家FrankRosenblatt在1957年提出。它是一种单层的前馈神经网络,通常用于二分类问题。基本感知器由多个输入节点、一个输出节点和一组权重参数组成。每个输入节点都与输出节点连接,并且具有一个对应的权重参数,用来调节输入的重要性。感知器的输出是输入的线性组合,通过一个激活函数进行转换,最终输出一个二进制值(通常是0或1
- 日更挑战-神经网络之感知器
愿你我皆是黑马
越不懂的越爱装大家都同等:IT世界没有难不难,只有是否了解过挑战目录问题1:什么是感知器?解答:首先可以先说一下线性函数y=wx+b:对于传入x=x1的时候会输出y1。这时候线上面点用y1+n=wx1+b(n为大于0的数),同理y1-n=wx1+b是线下面的点。那么假设一个随机数a:wx1+b=a,这时(y-a)大于或小于0表示(x1,a)在这个线的上面还是下面。那么a=wx1+(b-y)的结果a
- 机器学习11-前馈神经网络识别手写数字1.0
dracularking
机器学习机器学习神经网络人工智能预测手写数字
在这个示例中,使用的神经网络是一个简单的全连接前馈神经网络,也称为多层感知器(MultilayerPerceptron,MLP)。这个神经网络由几个关键组件构成:1.输入层输入层接收输入数据,这里是一个28x28的灰度图像,每个像素值表示图像中的亮度值。2.Flatten层Flatten层用于将输入数据展平为一维向量,以便传递给后续的全连接层。在这里,我们将28x28的图像展平为一个长度为784的
- 【神经网络】单层感知器
Loong_DQX
感知器神经网络机器学习深度学习
在了解感知机之前的先知道1943年Mccilloch和Pitts所提出的M-P模型。M-P模型其实就是现在的神经网络中的一个神经元,但是与之不同的点在于它没有非线性激活函数激活,也不能这么说,就是没有类似sigmoid或者tanh函数激活,而它用的仅仅是一个阈值去激活。所以它的数学表达式为:此处的f函数就是阈值函数。但是这里的权重w和偏置b都是人为设定的,并不存在学习一说,这就是M-P模型与单层感
- MLP多层感知器+BP算法原理及实战
Loong_DQX
感知器BP算法机器学习深度学习
多层感知器是在感知器的基础上多元化,原来只是用一个感知器,但是单个感知器因为是单输出,所以只能进行二分类的操作,他并不能进行类似异或问题的求解,再次基础上前辈们提出了多层感知器。如上图所示,{a11,a12,a13}所代表的是第一层的神经元,{a21,a22}所代表的是第二层的神经元,图中的w代表的是权重。与单层感知器不同的是这里在前层神经元权重求和后,还有进行一次非线性激活函数激活,最后得到的就
- 个性推荐算法初探
崔玉龑
--以下内容于2017年3月2日记录于本人产品微博:http://weibo.com/cuibenbenpm最近对推荐算法突然感了兴趣,就去查了一些资料,发现好多文章技术性强,很难理解,那么在这我就用一些更形象的说法为你解释一下那些比还了解你自己的推荐算法(以笔记本电脑为例)。1、基于人口统计学推荐:跟你有相同性别、年龄的人喜欢用超薄(机型),估计你也喜欢。2、基于内容的推荐:你以前用过超薄,我告
- 深度学习(15)--PyTorch构建卷积神经网络
GodFishhh
深度学习深度学习人工智能
目录一.PyTorch构建卷积神经网络(CNN)详细流程二.graphviz+torchviz使PyTorch网络可视化2.1.可视化经典网络vgg162.2.可视化自己定义的网络一.PyTorch构建卷积神经网络(CNN)详细流程卷积神经网络(ConvolutionalNeuralNetworks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的详细介绍可以
- 《宇宙编年史:真理之书》中说生命是通过吸收能量来感知世界的,隐身术是提升能级后的必然产物
大医之道21
人类是如何感知世界的?为什么施一公说95%的物质我们无从感知?神话故事中的隐身术的本质又是什么?贤真人在其巨著《宇宙编年史-真理之书》中给出了答案。生命是通过五官等感知器官,吸收物质中的相似能量来感知世界的,而我们能量等级的多寡,将直接决定能感知到的世界形态。论据1:感知世界是吸收能量,打开灵洞的过程贤真人在书中指出,我们之所以能认识这个世界,并不是通过五官等感知器官直接感知到,而是通过感官吸收了
- ANN(MLP) 三种预测
取名真难.
机器学习python人工智能深度学习神经网络
目录介绍:一、Mlpforbinaryclassification数据:模型:预测:二、MlpforMulticlassClassification数据:模型:预测:三、MLPforRegression数据:模型:预测:介绍:多层感知器(MultilayerPerceptron,MLP)是一种基于人工神经网络的机器学习算法。它由多个神经元(也称为节点)组成,这些神经元排列在不同的层中,并且每个神经
- 深度学习入门笔记4 深度神经网络
深度学习从入门到放弃
深度学习笔记神经网络深度学习人工智能机器学习算法
多层感知器在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-LayerPerceptron)结构。多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。如果网络中包含一个以上的隐层,则称其为深度人工神经网络。说明:通常我们说的神经网络的
- 深度学习的发展历程和最新进展
稚肩
前沿技术浅谈深度学习人工智能
深度学习是机器学习领域的一个子集,它通过模仿人脑的神经网络结构,使用多层神经网络(深度神经网络)进行学习和模式识别。它的发展经历了多个阶段,早期阶段,冷静期,深度学习复兴时期等。早期阶段(20世纪50年代-80年代)深度学习的雏形可以追溯到上个世纪中叶,当时提出了感知器模型。然而,在当时由于计算能力受限、数据缺乏和算法限制等因素,深度学习的发展受到了限制。感知器模型感知器模型是一种简单的神经网络模
- 机器学习_13_SVM支持向量机、感知器模型
少云清
机器学习机器学习支持向量机人工智能感知器svm
文章目录1感知器模型1.1感知器的思想1.2感知器模型构建1.3损失函数构建、求解2SVM3线性可分SVM3.1线性可分SVM—概念3.2线性可分SVM—SVM模型公式表示3.3线性可分SVM—SVM损失函数3.4优化函数求解3.5线性可分SVM—算法流程3.6线性可分SVM—案例3.7线性可分SVM—总结4SVM的软间隔模型4.1SVM的软间隔模型—概念4.2SVM的软间隔模型—目标函数4.3优
- 【大厂AI课学习笔记】1.4 算法的进步(2)
giszz
学习笔记人工智能学习笔记
关于感知器的兴衰。MORE:感知器的兴衰一、感知器的发明与初期振动在人工智能的历史长河中,感知器(Perceptron)无疑是一个里程碑式的存在。它最初由心理学家FrankRosenblatt在1950年代提出,并在随后的几年中得到了广泛的关注和研究。感知器是一种二元线性分类器,其结构模仿了生物神经元的工作原理,能够通过简单的加权和阈值操作对输入进行分类。感知器的出现引起了巨大的振动。在当时,计算
- 神经网络
Fighting_No1
大数据神经网络
神经网络参考资料:TENSORFLOW系列专题TensorFlow从入门到精通深度学习的概念是从人工神经网络的研究中发展而来的,早期的感知器模型只能解决简单的线性分类问题,后来发现通过增加网络的层数可以解决类似于“异或问题”的线性不可分问题,这种多层的神经网络又被称为多层感知器。对于多层感知器,我们使用BP算法进行模型的训练,但是我们发现BP算法有着收敛速度慢,以及容易陷入局部最优等缺点,导致BP
- 神经网络是模型还是算法,神经网络模型数据处理
阳阳2013哈哈
PHP算法神经网络机器学习
神经网络算法原理4.2.1概述人工神经网络的研究与计算机的研究几乎是同步发展的。1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。神经网络技术在众
- 深度学习使用python建立最简单的神经元neuron
取名真难.
机器学习深度学习python人工智能
目录介绍数据:建模:模型:介绍在深度学习中,神经元通常指的是人工神经元(或感知器),它是深度神经网络中的基本单元。深度学习的神经元模拟了生物神经元的工作原理,但在实现上更加简化和抽象。在深度学习神经元中,每个神经元接收一组输入信号,通过加权求和和激活函数来生成输出信号。每个输入信号都有一个对应的权重,用于控制其对输出信号的影响程度。加权求和之后,通过激活函数进行非线性变换,以生成最终的输出信号。数
- 神经网络建立(结果可变)最小神经元
取名真难.
机器学习神经网络人工智能深度学习python机器学习
目录介绍:初始化:建模:预测:改变结果:介绍:在深度学习中,神经元通常指的是人工神经元(或感知器),它是深度神经网络中的基本单元。深度学习的神经元模拟了生物神经元的工作原理,但在实现上更加简化和抽象。在深度学习神经元中,每个神经元接收一组输入信号,通过加权求和和激活函数来生成输出信号。每个输入信号都有一个对应的权重,用于控制其对输出信号的影响程度。加权求和之后,通过激活函数进行非线性变换,以生成最
- 节选自李笑来老师最新线下大课《新时代个人商业模式的升级》。
快乐作文赵老师
1.强化注意力。注意力是人身上拥有的最重要的价值,在实现个人财富和事业升级的时候它会起到非常关键的作用,它的价值大于时间,大于金钱大于其它身外之物的总和。举例:很多人背英文单词,效果不尽人意,原因是背得方法不对,正确背单词的方法应该尽量调动身体的一切感知器官,利用眼睛、嘴巴、耳朵和手组合的方式把英文单词背诵下来,这个方式的核心就是集中你所有的注意力。人和人之间的差距是从注意力开始出现了差异,就像1
- 关于大模型学习中遇到的4
ringthebell
记录学习
来源:网络相关学习可查看文章:TransformerandPretrainLanguageModels3-4什么是MLP?MLP是多层感知器(MultilayerPerceptron)的缩写,多层感知机(MLP)是一种人工神经网络(ANN)的一种,也称为多层前馈网络(MLFN)、深度前馈神经网络(DFNN)、回归神经网络(RNN),是机器学习中一种有监督学习算法。MLP由输入层、输出层和一个以上的
- 【数学建模】智能算法
自律版光追
数学建模数学建模pythonscikit-learnmatplotlib遗传算法模拟退火算法人工神经网络
文章目录模拟退火算法简介算法流程及应用算法流程算法应用遗传算法遗传算法的原理遗传算法应用模型及算法模型求解人工神经网络概述人工神经元激活函数基本模型感知器BP神经网络RBF神经网络应用智能算法,也称现代优化算法模拟退火算法简介材料统计力学观点:材料中粒子的不同结构对应于粒子的不同能量水平在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温
- 【单层感知器】花语神经网络的原理解析
德天老师
AI故事专栏AI模型专栏机器学习神经网络人工智能深度学习
神经网络感知器(Perceptron)是神经网络中最基础的单元,它的工作原理可以用一个通俗的比喻来解释。假设有一个花园,花园里有各种各样的花,我们要通过花的特征来识别不同的花种。神经网络感知器就像是一个智能的花匠,它能够根据花的特征进行分类和识别。感知器的输入就像是花的特征,比如颜色、形状、大小等等。这些特征被输入到感知器中,感知器会根据这些特征做出决策,判断这个花属于哪一类。感知器内部有一组权重
- 深度学习-多层感知器-建立MLP实现非线性二分类-MLP实现图像多分类
小旺不正经
人工智能深度学习分类人工智能
多层感知器(Multi-LayerPerceptron)(人工神经网络)多层感知器模型框架MLP用于非线性分类预测在不增加高次项数据的情况下,如何通过MLP实现非线性分类预测MLP模型框架MLP实现多分类预测实战准备KerasKeras是一个用Python编写的用于神经网络开发的应用接口,调用开接口可以实现神经网络、卷积神经网络、循环神经网络等常用深度学习算法的开发特点:集成了深度学习中各类成熟的
- 【Day1】《认知尺度》读书心得—北斗
白夜雾语
第一节感想:布局未来是可以实现的,提高自己思维高度与广度,通过数据分析及把握未来科技趋势,提前进入圈子可以最大影响未来及提高自身价值,如果你想在某一圈子有一定的成就,自身与圈子的位置关系至关重要,在圈子里且要更接近核心才能更有发展力。第二节感想:自己与宇宙世界的关系有一个新的认识,没有绝对真实的世界,我们所见所感皆是通过我们的感知器官所接受的,那些不在我们感官接收的信息对于我们是透明或者说我们觉得
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS