Rain on your Parade

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 1310    Accepted Submission(s): 373


Problem Description
You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day.
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?

Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
 

Input
The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= s i <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
 

Output
For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line.
 

Sample Input
2 1 2 1 0 3 3 0 3 2 4 0 6 0 1 2 1 1 2 3 3 2 2 2 2 4 4
 

Sample Output
Scenario #1: 2 Scenario #2: 2
 

Source
HDU 2008-10 Public Contest
 

Recommend
lcy
 
 
先用匈牙利算法的DFS版本,一直超时,
后改用Hopcroft-Carp算法,顺利AC。
 
超时版代码:、
#include<stdio.h>
#include
<math.h>
#include
<iostream>
using namespace std;
#define eps 1e-6
#define MAXN 3005
struct Node1
{
int x,y,s;
}guests[MAXN];
struct Node2
{
int x,y;
}um[MAXN];
double dis(Node1 a,Node2 b)
{
double x=a.x-b.x;
double y=a.y-b.y;

return sqrt(x*x+y*y);
}
int uN,vN;
int g[MAXN][MAXN];
bool used[MAXN];
int linker[MAXN];
bool dfs(int u)
{
int v;
for(v=0;v<vN;v++)
if(g[u][v]&&!used[v])
{
used[v]
=true;
if(linker[v]==-1||dfs(linker[v]))
{
linker[v]
=u;
return true;
}
}
return false;
}
int hungary()
{
int res=0;
int u;
memset(linker,
-1,sizeof(linker));
for(u=0;u<uN;u++)
{
memset(used,
0,sizeof(used));
if(dfs(u)) res++;
}
return res;
}
int main()
{
//freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
int n,m,t,i,j;
int T,iCase=0;
scanf(
"%d",&T);
while(T--)
{
iCase
++;
scanf(
"%d",&t);
scanf(
"%d",&m);
for(i=0;i<m;i++)
scanf(
"%d%d%d",&guests[i].x,&guests[i].y,&guests[i].s);
scanf(
"%d",&n);
for(i=0;i<n;i++)
scanf(
"%d%d",&um[i].x,&um[i].y);
uN
=0;vN=n;
bool cnt;
memset(g,
0,sizeof(g));
for(i=0;i<m;i++)
{
cnt
=false;
for(j=0;j<n;j++)
{
if(dis(guests[i],um[j])/guests[i].s-t<eps)
{
g[i][j]
=1;cnt=true;
}
}
if(cnt) uN++;
}
printf(
"Scenario #%d:\n%d\n\n",iCase,hungary());
}
return 0;
}

AC代码:

#include<stdio.h>
#include
<queue>
#include
<iostream>
#include
<string.h>
#include
<math.h>
using namespace std;
#define eps 1e-6

const int MAXN=3005;
const int INF=1<<28;
int g[MAXN][MAXN],Mx[MAXN],My[MAXN],Nx,Ny;
int dx[MAXN],dy[MAXN],dis;
bool vst[MAXN];
struct Node1
{
int x,y,s;
}guests[MAXN];
struct Node2
{
int x,y;
}um[MAXN];
double distance(Node1 a,Node2 b)
{
double x=a.x-b.x;
double y=a.y-b.y;

return sqrt(x*x+y*y);
}
bool searchP()
{
queue
<int>Q;
dis
=INF;
memset(dx,
-1,sizeof(dx));
memset(dy,
-1,sizeof(dy));
for(int i=0;i<Nx;i++)
if(Mx[i]==-1)
{
Q.push(i);
dx[i]
=0;
}
while(!Q.empty())
{
int u=Q.front();
Q.pop();
if(dx[u]>dis) break;
for(int v=0;v<Ny;v++)
if(g[u][v]&&dy[v]==-1)
{
dy[v]
=dx[u]+1;
if(My[v]==-1) dis=dy[v];
else
{
dx[My[v]]
=dy[v]+1;
Q.push(My[v]);
}
}
}
return dis!=INF;
}
bool DFS(int u)
{
for(int v=0;v<Ny;v++)
if(!vst[v]&&g[u][v]&&dy[v]==dx[u]+1)
{
vst[v]
=1;
if(My[v]!=-1&&dy[v]==dis) continue;
if(My[v]==-1||DFS(My[v]))
{
My[v]
=u;
Mx[u]
=v;
return 1;
}
}
return 0;
}
int MaxMatch()
{
int res=0;
memset(Mx,
-1,sizeof(Mx));
memset(My,
-1,sizeof(My));
while(searchP())
{
memset(vst,
0,sizeof(vst));
for(int i=0;i<Nx;i++)
if(Mx[i]==-1&&DFS(i)) res++;
}
return res;
}

int main()
{
//freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
int n,m,t,i,j;
int T,iCase=0;
scanf(
"%d",&T);
while(T--)
{
iCase
++;
scanf(
"%d",&t);
scanf(
"%d",&m);
for(i=0;i<m;i++)
scanf(
"%d%d%d",&guests[i].x,&guests[i].y,&guests[i].s);
scanf(
"%d",&n);
for(i=0;i<n;i++)
scanf(
"%d%d",&um[i].x,&um[i].y);
Nx
=m;Ny=n;
memset(g,
0,sizeof(g));
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
if(distance(guests[i],um[j])/guests[i].s-t<eps)
{
g[i][j]
=1;
}
}
}
printf(
"Scenario #%d:\n%d\n\n",iCase,MaxMatch());
}
return 0;
}