对于PCA,一直都是有个概念,没有实际使用过,今天终于实际使用了一把,发现PCA还是挺神奇的。
在OPENCV中使用PCA非常简单,只要几条语句就可以了。
1、初始化数据
//每一行表示一个样本
CvMat* pData = cvCreateMat( 总的样本数, 每个样本的维数, CV_32FC1 );
CvMat* pMean = cvCreateMat(1, 样本的维数, CV_32FC1);
//pEigVals中的每个数表示一个特征值
CvMat* pEigVals = cvCreateMat(1, min(总的样本数,样本的维数), CV_32FC1);
//每一行表示一个特征向量
CvMat* pEigVecs = cvCreateMat( min(总的样本数,样本的维数), 样本的维数, CV_32FC1);
2、PCA处理,计算出平均向量pMean,特征值pEigVals和特征向量pEigVecs
cvCalcPCA( pData, pMean, pEigVals, pEigVecs, CV_PCA_DATA_AS_ROW );
3、选出前P个特征向量(主成份),然后投影,结果保存在pResult中,pResult中包含了P个系数
CvMat* pResult = cvCreateMat( 总的样本数, PCA变换后的样本维数(即主成份的数目), CV_32FC1 );
cvProjectPCA( pData, pMean, pEigVecs, pResult );
4、 重构,结果保存在pRecon中
CvMat* pRecon = cvCreateMat( 总的样本数, 每个样本的维数, CV_32FC1 );
cvBackProjectPCA( pResult, pMean, pEigVecs, pRecon );
5、重构误差的计算
计算pRecon和pData的"差"就可以了.
使用时如果是想用PCA判断“是非”问题,则可以先用正样本计算主成分,判断时,对需要判断得数据进行投影,然后重构,计算重构出的数据与原数据的差异,如果差异在给定范围内,可以认为“是”。
如果相用PCA进行分类,例如对数字进行分类,则先用所有数据(0-9的所有样本)计算主成分,然后对每一类数据进行投影,计算投影的系数,可简单得求平均。即对每一类求出平均系数。分类时,将需要分类得数据进行投影,得到系数,与先前计算出得每一类得平均系数进行比较,可判为最接近得一类。当然这只是最简单得使用方法。
转载: http://blog.sina.com.cn/s/blog_4b9b714a0100hc8o.html