http://blog.csdn.net/jiang199235jiangjj/article/details/7452389
Consider words of length 3n over alphabet {A, B, C} . Denote the number of occurences of A in a word a as A(a) , analogously let the number of occurences of B be denoted as B(a), and the number of occurenced of C as C(a) .
Let us call the word w regular if the following conditions are satisfied:
A(w)=B(w)=C(w) ;
if c is a prefix of w , then A(c)>= B(c) >= C(c) .
For example, if n = 2 there are 5 regular words: AABBCC , AABCBC , ABABCC , ABACBC and ABCABC .
Regular words in some sense generalize regular brackets sequences (if we consider two-letter alphabet and put similar conditions on regular words, they represent regular brackets sequences).
Given n , find the number of regular words.
我之前是用递归做的,就是和做括号组合的种类一样的思路,想不到还是有递归的方法。
解题:设函数dp[i][j][k]表示该序列中有i个A,j个B,k个C组成,则dp[i][j][k]是有dp[i-1][j][k],dp[i][j-1][k],dp[i][j][k-1]这三个添加过来的,所以动态转移方程式
dp[i][j][k]=dp[i-1][j][k]+dp[i][j-1][k]+dp[i][j][k-1];同时注意,dp的结果很大,要用到大数。
设sum[i]表示当n为i时的结果,即当i==j==k时的结果。(注意:把dp和sum都定义成char型数组,否则会超存)。
#include <iostream> #include <stdio.h> #include <string.h> #include <cmath> #define N 80 using namespace std; char num[62][N],dp[62][62][62][N]; void sum(char a[N],char b[N]) { int n=a[0],m=b[0],i,j,k; a[0]=k=max(n,m); for(i=1;i<=k;i++) { a[i]+=b[i]; if(a[i]>9) { a[i+1]++; a[i]%=10; if(i+1>k) { k++;a[0]++; } } } } void cpy(char a[N],char b[N]) { int i; for(i=0;i<=b[0];i++) { a[i]=b[i]; } } void add(int x,int y,int z) { if(x-1>=0&&x-1>=y&&y>=z) sum(dp[x][y][z],dp[x-1][y][z]); if(y-1>=0&&x>=y-1&&y-1>=z) sum(dp[x][y][z],dp[x][y-1][z]); if(z-1>=0&&x>=y&&y>=z-1) sum(dp[x][y][z],dp[x][y][z-1]); } void fun() { int i,j,k; memset(dp,0,sizeof(dp)); dp[0][0][0][0]=dp[0][0][0][1]=1; for(i=1;i<=60;i++) for(j=0;j<=i;j++) for(k=0;k<=j;k++) { add(i,j,k); if(i==j&&j==k) { cpy(num[i],dp[i][j][k]); } } } int main() { fun(); int n; while(~scanf("%d",&n)) { for(int i=num[n][0];i>0;i--) printf("%d",num[n][i]); printf("\n\n"); } }