http://dongxicheng.org/data-mining/hadoop-sampling/
1. 问题由来
Google曾经有一道非常经典的面试题:
给你一个长度为N的链表。N很大,但你不知道N有多大。你的任务是从这N个元素中随机取出k个元素。你只能遍历这个链表一次。你的算法必须保证取出的元素恰好有k个,且它们是完全随机的(出现概率均等)?
这道题的解法非常多,网上讨论也非常热烈。本文要讨论的是,这个问题是从何而来,有什么实用价值?
自从有了Hadoop之后,该问题便有了新的应用载体。随着数据量的增多,很多数据挖掘算法被转移到MapReduce上实现,而数据挖掘中有个基本的问题是怎样对数据进行抽样。在Hadoop中,每个job会被分解成多个task并行计算,而数据的总量事先是不知道的(知道job运行结束才能获取数总数,而数据量非常大时,扫描一遍数据的代价非常高),用户知道的只是要获取的样本量,那怎样在类似于Hadoop的分布式平台上进行数据抽样?
回过头来看google的这道面试题,是不是正好时Hadoop平台上海量数据抽样问题?
2. 在Hadoop上编写抽样程序
2.1 解法一
(1) 设计思想
蓄水池抽样:先保存前k个元素, 从第k+1个元素开始, 以1/i (i=k+1, k+2,…,N) 的概率选中第i个元素,并随机替换掉一个已保存的记录,这样遍历一次得到k个元素,可以保证完全随机选取。
(2) MapReduce实现
要实现该抽样算法,只需编写Mapper即可。在Map函数中,用户定义一个vector保存选中的k个元素,待扫描完所有元素后,在析构函数中将vector中的数据写到磁盘中。
用户运行job时,需指定每个map task的采样量。比如,用户该job的map task个数为s,则每个map task需要采集k/s个元素。