- 一种高效轻量化的自注意力解码器架构:原理与优势解析
东方佑
量子变法人工智能python
在自然语言处理和序列建模任务中,Transformer架构因其强大的并行计算能力和长序列建模能力而广受欢迎。然而,传统Transformer的自注意力机制计算复杂度高(O(n²)),且参数量较大,这在资源受限的场景下(如移动端或实时推理)成为瓶颈。本文将介绍一种创新的自注意力解码器架构,通过优化注意力机制、门控前馈网络和参数共享策略,在保持性能的同时显著提升效率。1.模型架构概述核心组件MaxSt
- 大语言模型应用指南:什么是大语言模型
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题《大语言模型应用指南:什么是大语言模型》关键词(1)大语言模型(2)深度学习(3)自然语言处理(4)序列模型(5)Transformer(6)神经网络(7)预训练语言模型摘要本文将深入探讨大语言模型(LargeLanguageModel)的概念、原理、应用及其发展历程。我们将通过逐步分析,从基础概念入手,详细解释大语言模型的工作机制,包括其训练算法、推理算法以及关键数学模型。通过实际项目案
- 分类任务-
Kriol
深度学习初学分类数据挖掘人工智能
importrandomimporttorchimporttorch.nnasnnimportnumpyasnpimportosfromPILimportImage#读取图片数据fromtorch.utils.dataimportDataset,DataLoaderfromtqdmimporttqdmfromtorchvisionimporttransformsimporttimeimportma
- 手把手教你用PyTorch从零训练自己的大模型(非常详细)零基础入门到精通,收藏这一篇就够了
heaven522
pytorch人工智能pythonchatgpt深度学习机器学习华为
长按关注《AI科技论谈》LLM是如今大多数AI聊天机器人的核心基础,例如ChatGPT、Gemini、MetaAI、MistralAI等。这些LLM背后的核心是Transformer架构。本文介绍如何一步步使用PyTorch从零开始构建和训练一个大型语言模型(LLM)。该模型以Transformer架构为基础,实现英文到马来语的翻译功能,同时也适用于其他语言翻译任务。(本文以论文"Attentio
- 【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读
大F的智能小课
大模型理论和实战DeepSeek技术解析和实战人工智能机器学习架构
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!目录引言:大模型的革命性浪潮核心技术节点:从Transformer到生成式AI2.1Transformer架构的范式革命2.2生成式AI的底层逻辑2.3神经网络层级设计架构演进:OpenAI的技术突破3.1GPT系列的四个发展
- Open GL ES ->模型矩阵、视图矩阵、投影矩阵等变换矩阵数学推导以及方法接口说明
Yang-Never
OpenGLES矩阵androidandroidstudiokotlin
OpenGLES变换矩阵详解一、坐标空间变换流程局部空间->ModelMatrix(模型矩阵)->世界空间世界空间->ViewMatrix(视图矩阵)->观察空间观察空间->ProjectionMatrix(投影矩阵)->裁剪空间裁剪空间->ViewPortTransform(视口变换)>屏幕空间二、变换矩阵及计算1.模型矩阵ModelMatrix方法:Matrix.rotateM(),Matri
- 【大模型】视觉语言模型:Qwen2.5-VL的使用
Jackilina_Stone
#大模型语言模型人工智能Qwen2.5-VLpython
官方github地址:https://github.com/QwenLM/Qwen2.5-VL目录Qwen家族的最新成员:Qwen2.5-VL主要增强功能模型架构更新快速开始使用Transformers聊天DockerQwen家族的最新成员:Qwen2.5-VL主要增强功能强大的文档解析功能:将文本识别升级为全文档解析,擅长处理多场景、多语言和各种内置(手写、表格、图表、化学式和乐谱)文档。跨格式
- Transformer劲敌变队友?腾讯、英伟达都在用的Mamba-Transformer混合架构要火!
that's boy
transformer架构深度学习midjourneyAI编程AI写作AI作画
Transformer“单打独斗”的时代要结束了?Mamba-Transformer强势来袭!在过去的一两年里,Transformer架构一直是AI大模型领域的“霸主”,但它也面临着来自新兴架构的不断挑战。在众多“挑战者”中,Mamba无疑是最受瞩目的一个。然而,最近的风向似乎变了。Mamba和Transformer不再是“水火不容”的竞争对手,而是开始走向融合,携手打造更强大的AI模型!腾讯、英
- YOLOv12即插即用--DeformableAttention2D
辛勤的程序猿
YOLOv12改进YOLO
1.模块介绍传统Transformer注意力机制关注全局特征,计算量大,导致推理速度较慢。而DeformableAttention通过仅关注目标周围的一小部分关键采样点,有效降低计算复杂度,同时提高模型的检测效率。相比于原始的DETR(DetectionTransformer),其训练过程通常需要较长时间才能收敛,往往需要大量epoch才能精准地定位目标特征。而在DeformableDETR中,由
- 第P8周:YOLOv5-C3模块实现
小羊的 utopia
pytorchpython
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊我的环境:语言环境:python3.12.6编译器:jupyterlab深度学习环境:Pytorch前期准备importtorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchvisionfromtorchvisionimporttransform
- 大语言模型在生成文章摘要、新闻标题领域的应用
knightissocool
自然语言处理语言模型
大语言模型(LLM)在文章摘要和新闻标题生成领域已形成多个成熟应用,这些应用通过提升效率、优化质量和适应复杂场景,显著改变了内容处理的方式。以下是具体应用场景及技术特点的总结:一、文章摘要的成熟应用自动生成结构化摘要大语言模型能够识别长文本的引言、主体和结论等结构,并提取关键信息生成简洁摘要。例如,基于Transformer的模型(如BERT、GPT)通过注意力机制捕捉长距离依赖关系,显著提升了摘
- Spark2 之 Expression/Functions
zhixingheyi_tian
sparkspark
ExpressionConvertersrc/main/scala/org/apache/gluten/expression/ExpressionConverter.scalaTopNTransformersrc/main/scala/org/apache/gluten/execution/TopNTransformer.scala
- LLM模型入门
長安一片月
人工智能
前言好久没动过博客了,最近正好在看ai安全,就以此着手讲讲现在最流行的LLM模型吧LLM是什么线下最火的deepseek,chatGPT,通义千问等所有大模型都有个统称,叫做LLM(LargeLanguageModel,LLM)。都是基于transformer架构通过配置不同策略和算法以及关键的prompt实现不同效果的语言模型的。为什么叫large,是模型调用学习了很多参数,比如GPT-4o就存
- AI问答:transformer 架构 / 模型 / 自注意力机制实现序列数据的并行处理 / AI的底层
快雪时晴-初晴融雪
前端transformer深度学习人工智能
Transformer架构是一种基于自注意力机制的深度学习模型,最初由谷歌团队在2017年提出,用于解决自然语言处理中的序列转导问题,尤其是机器翻译任务。该架构摒弃了传统循环神经网络(RNN)和卷积神经网络(CNN)中的递归和卷积操作,通过自注意力机制实现了对序列数据的并行处理,显著提高了模型的训练速度和性能。一、Transformer架构的组成Transformer架构主要由以下几个部分组成1.
- 未来AI视觉艺术,会替代人类设计师吗?
非知名人士
AI随想人工智能深度学习计算机视觉
废话不说,我们先通过代码示例,了解AI生成图像的基本过程以及如何控制图像的风格和质量。1.安装和设置环境首先,我们需要安装必要的库。确保你已经安装了torch、diffusers和transformers等库。pipinstalltorchtorchvisiondiffuserstransformers2.加载预训练模型在这个例子中,我们继续使用StableDiffusion模型,加载该模型并将其
- transformers中学习率warmup策略具体如何设置
糖葫芦君
LLM学习人工智能机器学习大数据pytorch
在使用get_linear_schedule_with_warmup(如HuggingFaceTransformers库中的学习率调度器)时,参数的合理设置需要结合数据量(datasetsize)、批次大小(batchsize)和训练轮数(epochs)来确定。以下是分步指南和公式说明:1.核心参数解析get_linear_schedule_with_warmup的主要参数:num_warmup_
- 【拥抱AI】对比embedding模型gte-Qwen2-7B-instruct和bge-m3:latest(三)
奔跑草-
人工智能人工智能embedding
为了更全面地评估gte-Qwen2-7B-instruct和bge-m3:latest的性能,我们可以从以下几个方面进行详细比较:1.模型架构和规模gte-Qwen2-7B-instruct架构:基于Transformer的大型语言模型。参数量:7B参数,具有较强的表达能力和泛化能力。训练数据:经过大量指令-响应对的训练,特别适合理解和生成高质量的文本。bge-m3:latest架构:基于BERT
- 视觉Transformer架构的前沿优化技术与高效部署
点我头像干啥
Ai深度学习神经网络计算机视觉
引言近年来,Transformer架构在自然语言处理(NLP)领域取得了巨大成功,逐渐成为深度学习的主流模型之一。随着研究的深入,Transformer架构也开始在计算机视觉领域崭露头角,尤其是在图像分类、目标检测和图像生成等任务中表现出色。然而,视觉Transformer(VisionTransformer,ViT)在计算效率和内存消耗方面面临巨大挑战,尤其是在处理高分辨率图像时。为了应对这些挑
- rasterio库简介及函数说明
海绵波波107
Python#Python的遥感应用笔记
目录简介常用函数栅格读写rasterio.open()dst.write()仿射变换rasterio.transform.from_origin()遮罩处理geometry_mask()简介Rasterio是一个用于读写栅格数据集的Python库,它提供了方便的接口来处理各种栅格数据格式,如GeoTIFF、JPEG、PNG等。Rasterio能够读取、写入和处理栅格数据,同时还提供了许多空间分析功
- 工单分类总结
Trank-Lw
分类数据挖掘人工智能
微调BERT-base模型,构建层次化分类器,Top-3准确率达97.2%,并自动识别出问题的关键类别1.具体微调的BERT-base模型是什么模型?BERT-base模型是一个预训练的Transformer模型,包含12个Transformer块、12个自注意头和隐藏大小为768。该模型在大规模文本数据上进行了预训练,能够捕捉文本的上下文信息和语义特征。2.如何微调的,微调步骤?微调BERT-b
- Stable Diffusion进行图像生成
月月猿java
人工智能
使用StableDiffusion进行图像生成通常涉及以下步骤:安装依赖库:首先,你需要安装必要的Python库,如PyTorch、torchvision、diffusers和transformers等。这些库将为你提供深度学习框架、图像处理工具和StableDiffusion模型的接口。获取预训练模型:StableDiffusion模型通常很大,因此你需要从可靠的来源下载预训练模型。Huggin
- 【transformer理论+实战(三)】必要的 Pytorch 知识
造夢先森
AI大模型transformerpytorch深度学习
【Transformer理论+实战(三)】必要的Pytorch知识【Transformer理论+实战(二)】Lora本地微调实战--deepseek-r1蒸馏模型【Transformer理论+实战(一)】Transformer&LLaMA&Lora介绍文章目录Pytorch基础张量(Tensor)拼接与拆分调整形状索引与切片降维与升维张量计算Pytorch由Facebook人工智能研究院于2017
- 大模型压缩技术主要是为了在保持模型性能的前提下,减少模型的参数量和计算复杂度,以适应更低的计算资源、更小的内存占用和更快的推理速度。以下是当前主流的模型压缩技术,包括但不限于
Jeremg
人工智能语言模型
1.剪枝(Pruning)剪枝通过删除神经网络中冗余或不重要的权重(或神经元)来减少模型规模。常见方法:非结构化剪枝:直接去除权重值接近于零的单个参数。结构化剪枝:删除整个卷积核、神经元或注意力头,以减少模型复杂度。动态剪枝:根据输入动态调整剪枝策略,保持灵活性。示例:剪掉Transformer中不重要的注意力头剪掉CNN中对特征提取贡献小的通道2.量化(Quantization)量化是指将模型的
- 基于Python的自然语言处理系列(60):使用 LangChain 构建 Multi-Vector Retriever 进行文档检索
会飞的Anthony
人工智能信息系统自然语言处理人工智能深度学习机器学习
在NLP和AI领域,基于嵌入(Embeddings)进行文档检索已成为一种高效的解决方案。本文介绍如何使用LangChain构建Multi-VectorRetriever,实现对长文档的分块索引和高效检索。1.环境准备首先,我们需要安装相关依赖库。pipinstalllangchainchromadbtorchtransformers2.加载文档并进行预处理我们先使用TextLoader读取多个文
- Unity脚本编程:C#脚本中的常用组件详解
Front_Yue
3D技术实践指南unityc#3d
在Unity游戏开发中,C#脚本是控制游戏逻辑的核心工具。通过编写脚本,开发者可以控制游戏对象的行为、交互和动态变化。本文将深入探讨Unity脚本编程中常用的C#脚本组件,包括Transform、Rigidbody、Collider、Input、Time和Mathf,并通过示例代码展示它们的实际应用。1.Transform组件Transform是Unity中最基础的组件之一,它控制着游戏对象的位置
- DeepSeek详解:探索下一代语言模型
小小面试官
前沿技术工具算法模型人工智能DeepSeek核心功能多头注意力位置编码知识图谱pytorch
文章目录前言一、什么是DeepSeek二、DeepSeek核心技术2.1Transformer架构2.1.1自注意力机制(Self-AttentionMechanism)(a)核心思想(b)计算过程(c)代码实现2.1.2多头注意力(Multi-HeadAttention)(a)核心思想(b)工作原理(c)数学描述(d)代码实现2.1.3位置编码(PositionalEncoding)(a)什么是
- 【pytorch】图像数据预处理
子根
笔记pytorchpython深度学习
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换[PyTorch学习笔记]2.3二十二种transforms图片数据预处理方法-知乎TORCHVISION.TRANSFORMS的图像预处理_阿巫兮兮的博客-CSDN博客PyTorch09:transforms图像变换、方法操作及自定义方法-YEY的博客|YEYBlog2D、3D中心裁剪:imp
- 《深度剖析:BERT与GPT——自然语言处理架构的璀璨双星》
程序猿阿伟
自然语言处理bertgpt
在自然语言处理(NLP)的广袤星空中,BERT(BidirectionalEncoderRepresentationsfromTransformers)与GPT(GenerativePretrainedTransformer)系列模型宛如两颗最为耀眼的星辰,引领着NLP技术不断迈向新的高度。它们基于独特的架构设计,以强大的语言理解与生成能力,彻底革新了NLP的研究与应用范式,成为学界和业界竞相探索
- Unsloth 库和Hugging Face Transformers 库对比使用
背太阳的牧羊人
模型微调模型加载语言模型
在深度学习模型的微调过程中,保存模型及其权重是关键步骤。不同的库或框架提供了各自的方法来完成这一任务。Unsloth库:Unsloth是一个专注于加速大语言模型(LLM)微调的开源工具。它通过优化计算步骤和GPU内核,显著提升训练速度并减少内存使用。在Unsloth中,save_pretrained_merged方法用于将微调后的LoRA(Low-RankAdaptation)适配器权重与原始模型
- 【深度学习】Self-Attention机制详解:Transformer的核心引擎
烟锁池塘柳0
深度学习transformer人工智能
Self-Attention机制详解:Transformer的核心引擎文章目录Self-Attention机制详解:Transformer的核心引擎引言Self-Attention的基本概念为什么需要Self-Attention?Self-Attention的数学原理1.计算查询(Query)、键(Key)和值(Value)2.计算注意力分数3.缩放并应用Softmax4.加权求和多头注意力(Mu
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙 alxw4616@Msn.com
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源