求二进制数中1的个数

求二进制数中1的个数 http://www.msra.cn/Articles/ArticleItem.aspx?Guid=7cfc244e-aaf5-4669-be0a-3a8f32409731#. 对于一个字节(8bit)的变量,求其二进制表示中“1”的个数,要求算法的执行效率尽可能地高。 【解法一】 可以举一个八位的二进制例子来进行分析。对于二进制操作,我们知道,除以一个2,原来的数字将会减少一个0。如果除的过程中有余,那么就表示当前位置有一个1。 int Count(int v) { int num = 0; while(v) { if(v % 2 == 1) { num++; } v = v/ 2; } return num; } 【解法二】使用位操作 前面的代码看起来比较复杂。我们知道,向右移位操作同样也可以达到相除的目的。唯一不同之处在于,移位之后如何来判断是否有1存在。对于这个问题,再来看看一个八位的数字:10 100 001。 在向右移位的过程中,我们会把最后一位直接丢弃。因此,需要判断最后一位是否为1,而“与”操作可以达到目的。可以把这个八位的数字与00000001进行“与”操作。如果结果为1,则表示当前八位数的最后一位为1,否则为0。代码如下: int Count(int v) { int num = 0; While(v) { num += v &0x01; v >>= 1; } return num; } 【解法三】 位操作比除、余操作的效率高了很多。但是,即使采用位操作,时间复杂度仍为O(log2v),log2v为二进制数的位数。那么,还能不能再降低一些复杂度呢?如果有办法让算法的复杂度只与“1”的个数有关,复杂度不就能进一步降低了吗? 同样用10 100 001来举例。如果只考虑和1的个数相关,那么,我们是否能够在每次判断中,仅与1来进行判断呢? 为了简化这个问题,我们考虑只有一个1的情况。例如:01 000 000。 如何判断给定的二进制数里面有且仅有一个1呢?可以通过判断这个数是否是2的整数次幂来实现。另外,如果只和这一个“1”进行判断,如何设计操作呢?我们知道的是,如果进行这个操作,结果为0或为1,就可以得到结论。 int Count(int v) { int num = 0; while(v) { v &= (v-1); num++; } return num; } 【解法五】查表法 int countTable[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; int Count(int v) { //check parameter return countTable[v]; } 扩展问题 1. 如果变量是32位的DWORD,你会使用上述的哪一个算法,或者改进哪一个算法? 2. 另一个相关的问题,给定两个正整数(二进制形式表示)A和B,问把A变为B需要改变多少位(bit)?也就是说,整数A 和B 的二进制表示中有多少位是不同的?

异或再求1的个数

你可能感兴趣的:(算法,扩展)