在用户空间编程使用linux内核链表list,hlist宏定义和操作

http://www.chinaunix.net 作者:思一克  发表于:2008-09-17 09:56:44
【发表评论】【查看原文】【C/C++讨论区】【关闭】

在用户空间编程使用linux内核链表list,hlist宏定义和操作.

linux内核中的list_head和hlist_head/hlist_node是将数据结构串起来成为链表的两个重要链表构造工具。利用他们和其对应的宏定义,可以非常容易地将数据构成链表,进行链表的各种操作,和数据查询。

在内核中,他们使用的十分广泛。这些链表操作宏定义具有通用性,和具体数据结构无关。

利用他们,编程者就不必要自己具体操作链表的指针,而集中精力关心数据本身。使用这些工具的程序效率是很高的。

因为他们是内核定义的数据结构,在内核编程使用起来十分简单。

struct list_head { struct list_head *prev, *next; } 尺寸为2个指针大小。32位系统上为8个字节。
struct hlist_node 也是包含2个指针占8个字节。
struct hlist_head 占4个字节.

用他们将多个相同的数据结构串起来,必须在数据结构中加上他们的定义。一个数据结构也可以用多个相同链表或不同链表同时串起,串到多个不同的串中。

如果不在内核而在用户空间编程,也可以利用这些链表。(事实上,内核其它的数据结构多数都可以在用户空间使用)。

要“移植到用户空间”, 必须查找定义链表数据和宏的包含文件,将该文件拷贝出来,做适当改动,去掉内核特定的定义开关。如果该文件中引用的其它内核包含文件的关键数据定义,最好去掉引用,而将定义拷贝过来。

下面我给出的例子,就是一个用不同list_head和hash list将用户数据struct ST同时串起来的例子。
i_list是普通list的串。
i_hash是hash list的串(实际是多个串,被HASH分散在数组中,HASH关键字即是数组下标)

你可以想象数据结构是一个个货场的相同型号的分散放置的集装箱,为了将他们串起来,必须在箱子上安装上有孔的铁环,然后用铁丝通过这些安装上铁环就可以将他们串起来。
数据结构中的定义struct list_head就相当于铁环,可以焊接到箱子的任何位置。头部中间尾部都可以。

本例子中,一个箱子上安装了2个环,一个是i_list, 将箱子用一个长铁丝全部穿起来的。

还安了一个环i_hash, 这个环的用途是将箱子分组串到不同的串中(每个串使用一个独立的铁丝,当然每根铁丝长度就短了)。不同串的各个铁丝的头部排列放到一个hlist_head的数组中。


为了查找一个箱子,可以顺着长铁丝找(遍历),一个一个比较,知道找到箱子。但这样慢。
还可以直接顺着某个短铁丝找,如果事先可以确定要找的箱子必定在该端铁丝串中--这是可以做到的,hash的作用。

struct hlist_head仅仅用了一个指针,占4个字节,因为hash数组往往相当大,而每个串长度很短(hash的目的)。这样可以节省4个字节乘以数据大小的空间。

文件list.h是 include/linux/list.h文件的用户空间改编版本。
具体的定义的含义,我这里不再叙述,你可以自己查找。有许多内核数据结构分析的地方有解释。


建议用户用C编程时候,如涉及到链表使用,那么使用list_head! 可以极大节省你的工作量和调式时间。
linux内核中还有许多定义好通用的东西,都是非常精彩和高效的。许多都可移植到用户程序中使用。

[CODE]
#include <stdio.h>
#include <stdlib.h>
#include "list.h"

struct ST {
    unsigned char ch;
    int  this_data;
    
    struct list_head  i_list;
    
    int  more_data;
    
    struct hlist_node i_hash;
    
    char str_data[32];
    //.......
    int end_data;
} *st;

struct list_head list1;  
struct hlist_head hlist[1024];

#define LISTSIZE 1024

unsigned int gethash(int c)
{
    return (c & 0xff);
}

main()
{
int i;
unsigned int hash;
struct list_head *list;
struct list_head *n, *p;
struct ST *pst;
struct hlist_node *hp;

    INIT_LIST_HEAD(&list1);
    for(hash = 0; hash < LISTSIZE; hash++)
        INIT_HLIST_HEAD(&hlist[hash]);

    for(i = 0; i < LISTSIZE; i++) {
struct ST *p = malloc(sizeof(*p));
if(!p) {
    printf("malloc.\n");
    break;
}

p->ch = 'a' + i;

                //串入长串
                list_add(&p->i_list, &list1);


                //串入HASH短串
hash = gethash(p->ch);
printf("ALLOC %x %d %p %u\n", p->ch, i, p, hash);
hlist_add_head(&p->i_hash, &hlist[hash]);

    }
    
            
    //通过长铁丝遍历
    i = 0;
    list_for_each(list, &list1) {
struct ST *p = list_entry(list, struct ST, i_list);
        printf("%p  value %d = %c\n", p, i, p->ch);
i++;
    }
    printf("total %d \n", i);

    //----------------------
    //通过hash串查找内容'C'的箱子
    hash = gethash('c');
    hlist_for_each(hp, &hlist[hash]) {
struct ST *p = hlist_entry(hp, struct ST, i_hash);
printf("hlist: %c\n", p->ch);

    }

}
[/CODE]

改编后的放在用户空间的头文件list.h

[CODE]

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
 
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

#define container_of(ptr, type, member) ( { \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) ); } )
 
static inline void prefetch(const void *x) {;}
static inline void prefetchw(const void *x) {;}

#define LIST_POISON1  ((void *) 0x00100100)
#define LIST_POISON2  ((void *) 0x00200200)

struct list_head {
struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)

#define INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
      struct list_head *prev,
      struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}

static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}

static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}

static inline void list_del_init(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}

static inline void list_move(struct list_head *list, struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add(list, head);
}

static inline void list_move_tail(struct list_head *list,
  struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
}

static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}

static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}

static inline void __list_splice(struct list_head *list,
 struct list_head *head)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
struct list_head *at = head->next;

first->prev = head;
head->next = first;

last->next = at;
at->prev = last;
}

/**
 * list_splice - join two lists
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(struct list_head *list, struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
    struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
}

#define list_entry(ptr, type, member) container_of(ptr, type, member)


#define list_for_each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
         pos = pos->next)

#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)

#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
         pos = pos->prev)

#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)

#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
     prefetch(pos->member.next), &pos->member != (head);  \
     pos = list_entry(pos->member.next, typeof(*pos), member))

#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
     prefetch(pos->member.prev), &pos->member != (head);  \
     pos = list_entry(pos->member.prev, typeof(*pos), member))

#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))

#define list_for_each_entry_continue(pos, head, member)  \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
     prefetch(pos->member.next), &pos->member != (head); \
     pos = list_entry(pos->member.next, typeof(*pos), member))

#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
     &pos->member != (head);  \
     pos = n, n = list_entry(n->member.next, typeof(*n), member))

//HASH LIST
struct hlist_head {
struct hlist_node *first;
};

struct hlist_node {
struct hlist_node *next, **pprev;
};

#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
#define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)

static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}

static inline int hlist_empty(const struct hlist_head *h)
{
return !h->first;
}

static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
}

static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
}

static inline void hlist_del_init(struct hlist_node *n)
{
if (n->pprev)  {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}

static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
}


/* next must be != NULL */
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
}

static inline void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next;

if(next->next)
next->next->pprev  = &next->next;
}

#define hlist_entry(ptr, type, member) container_of(ptr,type,member)

#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
     pos = pos->next)

#define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
     pos = n)

#define hlist_for_each_entry(tpos, pos, head, member)  \
for (pos = (head)->first;  \
     pos && ({ prefetch(pos->next); 1;}) &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
     pos = pos->next)

#define hlist_for_each_entry_continue(tpos, pos, member)  \
for (pos = (pos)->next;  \
     pos && ({ prefetch(pos->next); 1;}) &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
     pos = pos->next)

#define hlist_for_each_entry_from(tpos, pos, member)  \
for (; pos && ({ prefetch(pos->next); 1;}) &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
     pos = pos->next)

#define hlist_for_each_entry_safe(tpos, pos, n, head, member)   \
for (pos = (head)->first;  \
     pos && ({ n = pos->next; 1; }) &&   \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
     pos = n)

#endif

[/CODE]


 W.Z.T 回复于:2007-05-27 16:28:40

加精...

 flw2 回复于:2007-05-27 19:04:46

版主自己加个精华好了
一直觉得这个东东和内核还是用户空间基本没有区别。

 福瑞哈哥 回复于:2007-05-27 20:17:57

記得以前有一個全macro的list.h和rbtree.h,可惜現在找不到了。

 acguy 回复于:2007-05-28 12:52:41

如果用c++还是stl方便

 思一克 回复于:2007-05-28 13:08:23

STL的效率你实验过?

 xhl 回复于:2007-05-28 14:49:00

引用:原帖由 福瑞哈哥 于 2007-5-27 20:17 发表
記得以前有一個全macro的list.h和rbtree.h,可惜現在找不到了。


我喜欢用BSD 的 queue.h  tree.h 等,
虽然全是macro写的,调试不太方便,但总比自己写省心。

[ 本帖最后由 xhl 于 2007-5-28 14:50 编辑 ]

 福瑞哈哥 回复于:2007-05-28 15:11:53

引用:原帖由 xhl 于 2007-5-28 14:49 发表


我喜欢用BSD 的 queue.h  tree.h 等,
虽然全是macro写的,调试不太方便,但总比自己写省心。


記起來了。

 duanjigang 回复于:2007-05-28 15:32:05

以前也尝试过这么写过,不过最后发现初始化和繁杂的参数实在令人烦恼,干脆就改用C++风格了
STL还是不错

 flw2 回复于:2007-05-28 18:48:43

引用:原帖由 duanjigang 于 2007-5-28 15:32 发表
以前也尝试过这么写过,不过最后发现初始化和繁杂的参数实在令人烦恼,干脆就改用C++风格了
STL还是不错

c能用stl吗?

 DesignInside 回复于:2007-05-28 20:43:05

wow...good job

 duanjigang 回复于:2007-05-29 09:16:07

引用:原帖由 flw2 于 2007-5-28 18:48 发表

c能用stl吗?


:em06::em06::em06:
我当然是用C++咯。。。。

 思一克 回复于:2007-05-29 09:34:29

KERNEL中主要是效率(速度),麻烦些不怕。一些系统软件也是如此。
C++/STL不容易作到。

 converse 回复于:2008-04-11 14:34:37

才看到思兄这份代码,我最近也要研究一下linux里面的这些宏,不过用g++编译的时候会报一些错误,虽然用C++的人使用这种宏的可能性不大,不过还是尽量做的完美一些好了,我做了一些修改:


#ifndef _LINUX_LIST_H

#define _LINUX_LIST_H



#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */



#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)



#define container_of(ptr, type, member) ( { \

        const typeof( ((type *)0)->member ) *__mptr = (ptr); \

        (type *)( (char *)__mptr - offsetof(type,member) ); } )



static inline void prefetch(const void *x) {;}

static inline void prefetchw(const void *x) {;}



#define LIST_POISON1  ((void *) 0x00100100)

#define LIST_POISON2  ((void *) 0x00200200)



struct list_head {

    struct list_head *next, *prev;

};



#define LIST_HEAD_INIT(name) { &(name), &(name) }



#define LIST_HEAD(name) \

    struct list_head name = LIST_HEAD_INIT(name)



#define INIT_LIST_HEAD(ptr) do { \

    (ptr)->next = (ptr); (ptr)->prev = (ptr); \

} while (0)



/*

 * * Insert a newobj entry between two known consecutive entries.

 * *

 * * This is only for internal list manipulation where we know

 * * the prev/next entries already!

 * */

static inline void __list_add(struct list_head *newobj,

        struct list_head *prev,

        struct list_head *next)

{

    next->prev = newobj;

    newobj->next = next;

    newobj->prev = prev;

    prev->next = newobj;

}



/**

 * * list_add - add a newobj entry

 * * @newobj: newobj entry to be added

 * * @head: list head to add it after

 * *

 * * Insert a newobj entry after the specified head.

 * * This is good for implementing stacks.

 * */

static inline void list_add(struct list_head *newobj, struct list_head *head)

{

    __list_add(newobj, head, head->next);

}



/**

 * * list_add_tail - add a newobj entry

 * * @newobj: newobj entry to be added

 * * @head: list head to add it before

 * *

 * * Insert a newobj entry before the specified head.

 * * This is useful for implementing queues.

 * */

static inline void list_add_tail(struct list_head *newobj, struct list_head *head)

{

    __list_add(newobj, head->prev, head);

}



static inline void __list_del(struct list_head * prev, struct list_head * next)

{

    next->prev = prev;

    prev->next = next;

}



static inline void list_del(struct list_head *entry)

{

    __list_del(entry->prev, entry->next);

    entry->next = (struct list_head*)LIST_POISON1;

    entry->prev = (struct list_head*)LIST_POISON2;

}



static inline void list_del_init(struct list_head *entry)

{

    __list_del(entry->prev, entry->next);

    INIT_LIST_HEAD(entry);

}



static inline void list_move(struct list_head *list, struct list_head *head)

{

    __list_del(list->prev, list->next);

    list_add(list, head);

}



static inline void list_move_tail(struct list_head *list,

        struct list_head *head)

{

    __list_del(list->prev, list->next);

    list_add_tail(list, head);

}



static inline int list_empty(const struct list_head *head)

{

    return head->next == head;

}



static inline int list_empty_careful(const struct list_head *head)

{

    struct list_head *next = head->next;

    return (next == head) && (next == head->prev);

}



static inline void __list_splice(struct list_head *list,

        struct list_head *head)

{

    struct list_head *first = list->next;

    struct list_head *last = list->prev;

    struct list_head *at = head->next;



    first->prev = head;

    head->next = first;



    last->next = at;

    at->prev = last;

}



/**

 * * list_splice - join two lists

 * * @list: the newobj list to add.

 * * @head: the place to add it in the first list.

 * */

static inline void list_splice(struct list_head *list, struct list_head *head)

{

    if (!list_empty(list))

        __list_splice(list, head);

}



/**

 * * list_splice_init - join two lists and reinitialise the emptied list.

 * * @list: the newobj list to add.

 * * @head: the place to add it in the first list.

 * *

 * * The list at @list is reinitialised

 * */

static inline void list_splice_init(struct list_head *list,

        struct list_head *head)

{

    if (!list_empty(list)) {

        __list_splice(list, head);

        INIT_LIST_HEAD(list);

    }

}



#define list_entry(ptr, type, member) container_of(ptr, type, member)





#define list_for_each(pos, head) \

    for (pos = (head)->next; prefetch(pos->next), pos != (head); \

            pos = pos->next)



#define __list_for_each(pos, head) \

    for (pos = (head)->next; pos != (head); pos = pos->next)



#define list_for_each_prev(pos, head) \

    for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \

            pos = pos->prev)



#define list_for_each_safe(pos, n, head) \

    for (pos = (head)->next, n = pos->next; pos != (head); \

            pos = n, n = pos->next)



#define list_for_each_entry(pos, head, member)                                \

    for (pos = list_entry((head)->next, typeof(*pos), member);        \

            prefetch(pos->member.next), &pos->member != (head);         \

            pos = list_entry(pos->member.next, typeof(*pos), member))



#define list_for_each_entry_reverse(pos, head, member)                        \

    for (pos = list_entry((head)->prev, typeof(*pos), member);        \

            prefetch(pos->member.prev), &pos->member != (head);         \

            pos = list_entry(pos->member.prev, typeof(*pos), member))



#define list_prepare_entry(pos, head, member) \

    ((pos) ? : list_entry(head, typeof(*pos), member))



#define list_for_each_entry_continue(pos, head, member)                 \

    for (pos = list_entry(pos->member.next, typeof(*pos), member);        \

            prefetch(pos->member.next), &pos->member != (head);        \

            pos = list_entry(pos->member.next, typeof(*pos), member))



#define list_for_each_entry_safe(pos, n, head, member)                        \

    for (pos = list_entry((head)->next, typeof(*pos), member),        \

            n = list_entry(pos->member.next, typeof(*pos), member);        \

            &pos->member != (head);                                         \

            pos = n, n = list_entry(n->member.next, typeof(*n), member))



//HASH LIST

struct hlist_head {

    struct hlist_node *first;

};



struct hlist_node {

    struct hlist_node *next, **pprev;

};



#define HLIST_HEAD_INIT { .first = NULL }

#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }

#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)

#define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)



static inline int hlist_unhashed(const struct hlist_node *h)

{

    return !h->pprev;

}



static inline int hlist_empty(const struct hlist_head *h)

{

    return !h->first;

}



static inline void __hlist_del(struct hlist_node *n)

{

    struct hlist_node *next = n->next;

    struct hlist_node **pprev = n->pprev;

    *pprev = next;

    if (next)

        next->pprev = pprev;

}



static inline void hlist_del(struct hlist_node *n)

{

    __hlist_del(n);

    n->next = (struct hlist_node*)LIST_POISON1;

    n->pprev = (struct hlist_node**)LIST_POISON2;

}



static inline void hlist_del_init(struct hlist_node *n)

{

    if (n->pprev)  {

        __hlist_del(n);

        INIT_HLIST_NODE(n);

    }

}



static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)

{

    struct hlist_node *first = h->first;

    n->next = first;

    if (first)

        first->pprev = &n->next;

    h->first = n;

    n->pprev = &h->first;

}





/* next must be != NULL */

static inline void hlist_add_before(struct hlist_node *n,

        struct hlist_node *next)

{

    n->pprev = next->pprev;

    n->next = next;

    next->pprev = &n->next;

    *(n->pprev) = n;

}



static inline void hlist_add_after(struct hlist_node *n,

        struct hlist_node *next)

{

    next->next = n->next;

    n->next = next;

    next->pprev = &n->next;



    if(next->next)

        next->next->pprev  = &next->next;

}



#define hlist_entry(ptr, type, member) container_of(ptr,type,member)



#define hlist_for_each(pos, head) \

    for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \

            pos = pos->next)



#define hlist_for_each_safe(pos, n, head) \

    for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \

            pos = n)



#define hlist_for_each_entry(tpos, pos, head, member)                         \

    for (pos = (head)->first;                                         \

            pos && ({ prefetch(pos->next); 1;}) &&                         \

            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

            pos = pos->next)



#define hlist_for_each_entry_continue(tpos, pos, member)                 \

    for (pos = (pos)->next;                                                 \

            pos && ({ prefetch(pos->next); 1;}) &&                         \

            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

            pos = pos->next)



#define hlist_for_each_entry_from(tpos, pos, member)                         \

    for (; pos && ({ prefetch(pos->next); 1;}) &&                         \

            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

            pos = pos->next)



#define hlist_for_each_entry_safe(tpos, pos, n, head, member)                  \

    for (pos = (head)->first;                                         \

            pos && ({ n = pos->next; 1; }) &&                                  \

            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

            pos = n)



#ifdef __cplusplus

}

#endif /* __cplusplus */



#endif





 芙蓉 回复于:2008-04-11 14:47:27

:mrgreen: :mrgreen: :mrgreen:

 converse 回复于:2008-04-11 15:49:46

看了一下 这些宏的设计很巧妙 但是用了一些gcc的扩展 比如typeof  这样要移植到别的编译器可能有一些问题  折中的办法是使用者自己传入类型替代这个宏.

 converse 回复于:2008-04-11 15:53:59

比如container_of宏的改造:

#define container_of(ptr, type, member) ( { \
        const typeof( ((type *)0)->member ) *__mptr = (ptr); \
        (type *)( (char *)__mptr - offsetof(type,member) ); } )
变为:
#define container_of2(ptr, ptrtype, type, member) ( { \
        const ptrtype *__mptr = (ptr); \
        (type *)( (char *)__mptr - offsetof(type,member) ); } )

 思一克 回复于:2008-04-11 16:21:12

LINUX代码非常巧妙, 还有许多比如树操作, 也是类似的宏+代码, 也可以在应用程序中使用.

引用:原帖由 converse 于 2008-4-11 15:53 发表 [url=http://bbs.chinaunix.net/redirect.php?goto=findpost&pid=8201216&ptid=941100]
比如container_of宏的改造:

#define container_of(ptr, type, member) ( { \
        const typeof( ((type *)0)->member ) *__mptr = (ptr); \
        (type *)( (char *)__mptr - offsetof(type,memb ...


 芙蓉 回复于:2008-04-11 17:16:38

引用:原帖由 converse 于 2008-4-11 15:53 发表 [url=http://bbs.chinaunix.net/redirect.php?goto=findpost&pid=8201216&ptid=941100]
比如container_of宏的改造:

#define container_of(ptr, type, member) ( { \
        const typeof( ((type *)0)->member ) *__mptr = (ptr); \
        (type *)( (char *)__mptr - offsetof(type,memb ...


为什么不变为:


#define container_of2(ptr, type, member) ( { \

        (type *)( (char *)(ptr) - offsetof(type,member) ); } )



上面的代码,该用typeof定义变量的时候不用,比如list_for_each_entry里的head
不该用typeof的时候却用了,比如这个container_of

 cobranail 回复于:2008-05-10 18:38:43

这个list.h在非linux系统中使用不会有问题吧?

#define LIST_POISON1  ((void *) 0x00100100)
#define LIST_POISON2  ((void *) 0x00200200)

这两个定义的作用是什么呢?

 pilgrim_kevin 回复于:2008-09-17 09:56:44

学习。




原文链接:http://bbs.chinaunix.net/viewthread.php?tid=941100
转载请注明作者名及原文出处


你可能感兴趣的:(在用户空间编程使用linux内核链表list,hlist宏定义和操作)