使用Matlab实现了二分类的SVM,优化技术使用的是Matlab自带优化函数quadprog。
只为检查所学,更为熟悉;不为炫耀。也没有太多时间去使用更多的优化方法。
function model = svm0311(data,options) %SVM0311 解决2分类的SVM方法,优化使用matlab优化工具箱quadprog函数实现 %by LiFeiteng email:[email protected] %Reference: stptool % Pattern Recognition and Machine Learning P333 7.32-7.37 % input aruments %------------------------------------------- tic data=c2s(data); [dim,num_data]=size(data.X); if nargin < 2, options=[]; else options=c2s(options); end if ~isfield(options,'ker'), options.ker = 'linear'; end if ~isfield(options,'arg'), options.arg = 1; end if ~isfield(options,'C'), options.C = inf; end if ~isfield(options,'norm'), options.norm = 1; end if ~isfield(options,'mu'), options.mu = 1e-12; end if ~isfield(options,'eps'), options.eps = 1e-12; end X = data.X; t = data.y; t(t==2) = -1; % Set up QP task %---------------------------- K = X'*X; T = t'*t;% 注意t是横向量 H = K.*T; save('H0311.mat','H') H = H + options.mu*eye(size(H)); f = -ones(num_data,1); Aeq = t; beq = 0; lb = zeros(num_data,1); ub = options.C*ones(num_data,1); x0 = zeros(num_data,1); qp_options = optimset('Display','off'); [Alpha,fval,exitflag] = quadprog(H, f,[],[], Aeq, beq, lb, ub, x0, qp_options); inx_sv = find(Alpha>options.eps); % compute bias %-------------------------- % take boundary (f(x)=+/-1) support vectors 0 < Alpha < C b = 0; inx_bound = find( Alpha > options.eps & Alpha < (options.C - options.eps)); Nm = length(inx_bound); for n = 1:Nm tmp = 0; for m = 1:length(inx_sv) %PRML7.37 tmp = tmp+Alpha(inx_sv(m))*t(inx_sv(m))*K(inx_bound(n),inx_sv(m)); end b = b + t(inx_bound(n))-tmp; end b = b/Nm; model.b = b; %----------------------------------------- w = zeros(dim,1); for i = 1:num_data w = w+ Alpha(i)*t(i)*X(:,i);%PRML 7.29 end margin = 1/norm(w); %------------------------------------------- %此处与stprtool保持接口一致 用于画图展示等 model.Alpha = Alpha( inx_sv ); model.sv.X = data.X(:,inx_sv ); model.sv.y = data.y(inx_sv ); model.sv.inx = inx_sv; model.nsv = length( inx_sv ); model.margin = margin; model.exitflag = exitflag; model.options = options; model.kercnt = num_data*(num_data+1)/2; model.trnerr = cerror(data.y,svmclass(data.X, model)); model.fun = 'svmclass'; model.W = model.sv.X*model.Alpha; % used CPU time model.cputime=toc; return;