在2001年刚刚出现的时候,OpenCV基于 C 语言接口而建。为了在内存(memory)中存放图像,当时采用名为 IplImage 的C语言结构体,时至今日这仍出现在大多数的旧版教程和教学材料。但这种方法必须接受C语言所有的不足,这其中最大的不足要数手动内存管理,其依据是用户要为开辟和销毁内存负责。虽然对于小型的程序来说手动管理内存不是问题,但一旦代码开始变得越来越庞大,你需要越来越多地纠缠于这个问题,而不是着力解决你的开发目标。
幸运的是,C++出现了,并且带来类的概念,这给用户带来另外一个选择:自动的内存管理(不严谨地说)。这是一个好消息,如果C++完全兼容C的话,这个变化不会带来兼容性问题。为此,OpenCV在2.0版本中引入了一个新的C++接口,利用自动内存管理给出了解决问题的新方法。使用这个方法,你不需要纠结在管理内存上,而且你的代码会变得简洁(少写多得)。但C++接口唯一的不足是当前许多嵌入式开发系统只支持C语言。所以,当目标不是这种开发平台时,没有必要使用旧方法(除非你是自找麻烦的受虐狂码农)。
关于 Mat ,首先要知道的是你不必再手动地
(1)为其开辟空间
(2)在不需要时立即将空间释放。
但手动地做还是可以的:大多数OpenCV函数仍会手动地为输出数据开辟空间。当传递一个已经存在的 Mat 对象时,开辟好的矩阵空间会被重用。也就是说,我们每次都使用大小正好的内存来完成任务。
基本上讲 Mat 是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同矩阵可以是不同的维数)的指针。矩阵头的尺寸是常数值,但矩阵本身的尺寸会依图像的不同而不同,通常比矩阵头的尺寸大数个数量级。因此,当在程序中传递图像并创建拷贝时,大的开销是由矩阵造成的,而不是信息头。OpenCV是一个图像处理库,囊括了大量的图像处理函数,为了解决问题通常要使用库中的多个函数,因此在函数中传递图像是家常便饭。同时不要忘了我们正在讨论的是计算量很大的图像处理算法,因此,除非万不得已,我们不应该拷贝 大 的图像,因为这会降低程序速度。
为了搞定这个问题,OpenCV使用引用计数机制。其思路是让每个 Mat 对象有自己的信息头,但共享同一个矩阵。这通过让矩阵指针指向同一地址而实现。而拷贝构造函数则只拷贝信息头和矩阵指针,而不拷贝矩阵。
Mat A, C; // 只创建信息头部分
A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // 这里为矩阵开辟内存
Mat B(A); // 使用拷贝构造函数
C = A; // 赋值运算符
以上代码中的所有Mat对象最终都指向同一个也是唯一一个数据矩阵。虽然它们的信息头不同,但通过任何一个对象所做的改变也会影响其它对象。实际上,不同的对象只是访问相同数据的不同途径而已。
这里还要提及一个比较棒的功能:你可以创建只引用部分数据的信息头。比如想要创建一个感兴趣区域( ROI ),你只需要创建包含边界信息的信息头:
Mat D (A, Rect(10, 10, 100, 100) ); // using a rectangle
Mat E = A(Range:all(), Range(1,3)); // using row and column boundaries
现在你也许会问,如果矩阵属于多个
Mat
对象,那么当不再需要它时谁来负责清理?简单的回答是:最后一个使用它的对象。通过引用计数机制来实现。无论什么时候有人拷贝了一个
Mat
对象的信息头,都会增加矩阵的引用次数;反之当一个头被释放之后,这个计数被减一;当计数值为零,矩阵会被清理。但某些时候你仍会想拷贝矩阵本身(不只是信息头和矩阵指针),这时可以使用函数 clone()
或者 copyTo()
。
Mat F = A.clone();
Mat G;
A.copyTo(G);
现在改变 F 或者 G 就不会影响 Mat 信息头所指向的矩阵。总结一下,你需要记住的是
- OpenCV函数中输出图像的内存分配是自动完成的(如果不特别指定的话)。
- 使用OpenCV的C++接口时不需要考虑内存释放问题。
- 赋值运算符和拷贝构造函数( ctor )只拷贝信息头。
- 使用函数 clone() 或者 copyTo() 来拷贝一副图像的矩阵。
为了debug,我们需要以更加方便的方式是看实际值。为此,你可以通过 Mat 的运算符 << 来实现,但要记住这只对二维矩阵有效。
Mat 不但是一个很赞的图像容器类,它同时也是一个通用的矩阵类,所以可以用来创建和操作多维矩阵。创建一个Mat对象有多种方法:
-
Mat() 构造函数
Mat M(2,2, CV_8UC3, Scalar(0,0,255));
cout << "M = " << endl << " " << M << endl << endl;
对于二维多通道图像,首先要定义其尺寸,即行数和列数。
然后,需要指定存储元素的数据类型以及每个矩阵点的通道数。为此,依据下面的规则有多种定义
CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number]
比如 CV_8UC3 表示使用8位的 unsigned char 型,每个像素由三个元素组成三通道。预先定义的通道数可以多达四个。 Scalar 是个short型vector。指定这个能够使用指定的定制化值来初始化矩阵。当然,如果你需要更多通道数,你可以使用大写的宏并把通道数放在小括号中,如下所示
这个创建方法不能为矩阵设初值,它只是在改变尺寸时重新为矩阵数据开辟内存。(不过上面结果的205怎么得到的我不知道,~|~)。
-
对于小矩阵你可以用逗号分隔的初始化函数:
Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
cout << "C = " << endl << " " << C << endl << endl;
OpenCV支持使用运算符<<来打印其它常用OpenCV数据结构。
-
2维点
Point2f P(5, 1);
cout << "Point (2D) = " << P << endl << endl;
-
3维点
Point3f P3f(2, 6, 7);
cout << "Point (3D) = " << P3f << endl << endl;
-
基于cv::Mat的std::vector
vector<float> v;
v.push_back( (float)CV_PI); v.push_back(2); v.push_back(3.01f);
cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;
-
std::vector点
vector<Point2f> vPoints(20);
for (size_t E = 0; E < vPoints.size(); ++E)
vPoints[E] = Point2f((float)(E * 5), (float)(E % 7));
cout << "A vector of 2D Points = " << vPoints << endl << endl;