考虑到大家有可能对深度学习的识别有点模糊,因此决定写一个短博客,简单介绍下如何识别,结合本系列的第一篇博文提到的深度学习之所以叫深度,其中之一的原因是多层RBM模仿了人脑多层神经元对输入数据进行层层预处理(值得一提的是并不是每层都是RBM,DBN就是个例外),即深层次的数据拟合,多个RBM连接起来构成DBM(deep boltzmann machines),每层RBM的节点数自己指定,这需要一些经验,DBN和DBM在训练上没有区别,都是逐层使用CD算法训练,也叫贪心预训练算法,DBN和DBM的区别如(图一)所示。
图一
对于二者都使用同一个算法来训练,看起来毫无区别,但是DBM有一个优势,由于RBM是无向的,这就决定了无论给定可视节点还是隐藏节点,各个节点都是独立的,可由图模型的马尔科夫性看出。作为无向图的DBM天生具有一些优秀的基因,比如当人看到一个外观性质,知道它是什么物体,同样你告诉他物体名字,他可以知道物体的外观应该是什么样子。这种互相推理的关系正好可以用无向图来表示。这种优势也顺理成章的延伸出了autoencoder(大家所谓的自编码神经网络)和栈式神经网络,最终输出的少量节点是可以推理(重建)出原来样本,也起到了降维的作用,无形中也找到了特征(编码),autoencoder的效果如图二所示。但是DBN中有些层是有向的,就不具有这种优势。
图二
二者逐层预训练后,结合样本标签,使用BP算法进行权重微调,说白了就是在预训练后的权重基础上使用BP算法进行训练,这样得出的权重更好些。。。
下面贴出部分DBN代码,大家可以看出总体思路是按照构建DBN网络(刚构建后的每层的权重是随机生成的,从代码也能看出),贪心层层预训练,权重微调,预测(识别)这个步骤来的。另外代码中softmax其实是多变量的逻辑回归函数,注意我发的下面的代码中权重微调使用的是逻辑回归,不是BP:
#include <iostream> #include <math.h> #include "HiddenLayer.h" #include "RBM.h" #include "LogisticRegression.h" #include "DBN.h" using namespace std; double uniform(double min, double max) { return rand() / (RAND_MAX + 1.0) * (max - min) + min; } int binomial(int n, double p) { if(p < 0 || p > 1) return 0; int c = 0; double r; for(int i=0; i<n; i++) { r = rand() / (RAND_MAX + 1.0); if (r < p) c++; } return c; } double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); } // DBN DBN::DBN(int size, int n_i, int *hls, int n_o, int n_l) { int input_size; N = size; n_ins = n_i; hidden_layer_sizes = hls; n_outs = n_o; n_layers = n_l; sigmoid_layers = new HiddenLayer*[n_layers]; rbm_layers = new RBM*[n_layers]; // construct multi-layer for(int i=0; i<n_layers; i++) { if(i == 0) { input_size = n_ins; } else { input_size = hidden_layer_sizes[i-1]; } // construct sigmoid_layer sigmoid_layers[i] = new HiddenLayer(N, input_size, hidden_layer_sizes[i], NULL, NULL); // construct rbm_layer rbm_layers[i] = new RBM(N, input_size, hidden_layer_sizes[i],\ sigmoid_layers[i]->W, sigmoid_layers[i]->b, NULL); } // layer for output using LogisticRegression log_layer = new LogisticRegression(N, hidden_layer_sizes[n_layers-1], n_outs); } DBN::~DBN() { delete log_layer; for(int i=0; i<n_layers; i++) { delete sigmoid_layers[i]; delete rbm_layers[i]; } delete[] sigmoid_layers; delete[] rbm_layers; } void DBN::pretrain(int *input, double lr, int k, int epochs) { int *layer_input; int prev_layer_input_size; int *prev_layer_input; int *train_X = new int[n_ins]; for(int i=0; i<n_layers; i++) { // layer-wise for(int epoch=0; epoch<epochs; epoch++) { // training epochs for(int n=0; n<N; n++) { // input x1...xN // initial input for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m]; // layer input for(int l=0; l<=i; l++) { if(l == 0) { layer_input = new int[n_ins]; for(int j=0; j<n_ins; j++) layer_input[j] = train_X[j]; } else { if(l == 1) prev_layer_input_size = n_ins; else prev_layer_input_size = hidden_layer_sizes[l-2]; prev_layer_input = new int[prev_layer_input_size]; for(int j=0; j<prev_layer_input_size; j++) prev_layer_input[j] = layer_input[j]; delete[] layer_input; layer_input = new int[hidden_layer_sizes[l-1]]; sigmoid_layers[l-1]->sample_h_given_v(prev_layer_input, layer_input); delete[] prev_layer_input; } } rbm_layers[i]->contrastive_divergence(layer_input, lr, k); } } } delete[] train_X; delete[] layer_input; } void DBN::finetune(int *input, int *label, double lr, int epochs) { int *layer_input; // int prev_layer_input_size; int *prev_layer_input; int *train_X = new int[n_ins]; int *train_Y = new int[n_outs]; for(int epoch=0; epoch<epochs; epoch++) { for(int n=0; n<N; n++) { // input x1...xN // initial input for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m]; for(int m=0; m<n_outs; m++) train_Y[m] = label[n * n_outs + m]; // layer input for(int i=0; i<n_layers; i++) { if(i == 0) { prev_layer_input = new int[n_ins]; for(int j=0; j<n_ins; j++) prev_layer_input[j] = train_X[j]; } else { prev_layer_input = new int[hidden_layer_sizes[i-1]]; for(int j=0; j<hidden_layer_sizes[i-1]; j++) prev_layer_input[j] = layer_input[j]; delete[] layer_input; } layer_input = new int[hidden_layer_sizes[i]]; sigmoid_layers[i]->sample_h_given_v(prev_layer_input, layer_input); delete[] prev_layer_input; } log_layer->train(layer_input, train_Y, lr); } // lr *= 0.95; } delete[] layer_input; delete[] train_X; delete[] train_Y; } void DBN::predict(int *x, double *y) { double *layer_input; // int prev_layer_input_size; double *prev_layer_input; double linear_output; prev_layer_input = new double[n_ins]; for(int j=0; j<n_ins; j++) prev_layer_input[j] = x[j]; // layer activation for(int i=0; i<n_layers; i++) { layer_input = new double[sigmoid_layers[i]->n_out]; for(int k=0; k<sigmoid_layers[i]->n_out; k++) { // linear_output = 0.0; //原代码中删除此句 for(int j=0; j<sigmoid_layers[i]->n_in; j++) { linear_output = 0.0; //原代码中添加此句 linear_output += sigmoid_layers[i]->W[k][j] * prev_layer_input[j]; } linear_output += sigmoid_layers[i]->b[k]; layer_input[k] = sigmoid(linear_output); } delete[] prev_layer_input; if(i < n_layers-1) { prev_layer_input = new double[sigmoid_layers[i]->n_out]; for(int j=0; j<sigmoid_layers[i]->n_out; j++) prev_layer_input[j] = layer_input[j]; delete[] layer_input; } } for(int i=0; i<log_layer->n_out; i++) { y[i] = 0; for(int j=0; j<log_layer->n_in; j++) { y[i] += log_layer->W[i][j] * layer_input[j]; } y[i] += log_layer->b[i]; } log_layer->softmax(y); delete[] layer_input; } // HiddenLayer HiddenLayer::HiddenLayer(int size, int in, int out, double **w, double *bp) { N = size; n_in = in; n_out = out; if(w == NULL) { W = new double*[n_out]; for(int i=0; i<n_out; i++) W[i] = new double[n_in]; double a = 1.0 / n_in; for(int i=0; i<n_out; i++) { for(int j=0; j<n_in; j++) { W[i][j] = uniform(-a, a); } } } else { W = w; } if(bp == NULL) { b = new double[n_out]; } else { b = bp; } } HiddenLayer::~HiddenLayer() { for(int i=0; i<n_out; i++) delete W[i]; delete[] W; delete[] b; } double HiddenLayer::output(int *input, double *w, double b) { double linear_output = 0.0; for(int j=0; j<n_in; j++) { linear_output += w[j] * input[j]; } linear_output += b; return sigmoid(linear_output); } void HiddenLayer::sample_h_given_v(int *input, int *sample) { for(int i=0; i<n_out; i++) { sample[i] = binomial(1, output(input, W[i], b[i])); } } // RBM RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) { N = size; n_visible = n_v; n_hidden = n_h; if(w == NULL) { W = new double*[n_hidden]; for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible]; double a = 1.0 / n_visible; for(int i=0; i<n_hidden; i++) { for(int j=0; j<n_visible; j++) { W[i][j] = uniform(-a, a); } } } else { W = w; } if(hb == NULL) { hbias = new double[n_hidden]; for(int i=0; i<n_hidden; i++) hbias[i] = 0; } else { hbias = hb; } if(vb == NULL) { vbias = new double[n_visible]; for(int i=0; i<n_visible; i++) vbias[i] = 0; } else { vbias = vb; } } RBM::~RBM() { // for(int i=0; i<n_hidden; i++) delete[] W[i]; // delete[] W; // delete[] hbias; delete[] vbias; } void RBM::contrastive_divergence(int *input, double lr, int k) { double *ph_mean = new double[n_hidden]; int *ph_sample = new int[n_hidden]; double *nv_means = new double[n_visible]; int *nv_samples = new int[n_visible]; double *nh_means = new double[n_hidden]; int *nh_samples = new int[n_hidden]; /* CD-k */ sample_h_given_v(input, ph_mean, ph_sample); for(int step=0; step<k; step++) { if(step == 0) { gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples); } else { gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples); } } for(int i=0; i<n_hidden; i++) { for(int j=0; j<n_visible; j++) { W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N; } hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N; } for(int i=0; i<n_visible; i++) { vbias[i] += lr * (input[i] - nv_samples[i]) / N; } delete[] ph_mean; delete[] ph_sample; delete[] nv_means; delete[] nv_samples; delete[] nh_means; delete[] nh_samples; } void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) { for(int i=0; i<n_hidden; i++) { mean[i] = propup(v0_sample, W[i], hbias[i]); sample[i] = binomial(1, mean[i]); } } void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) { for(int i=0; i<n_visible; i++) { mean[i] = propdown(h0_sample, i, vbias[i]); sample[i] = binomial(1, mean[i]); } } double RBM::propup(int *v, double *w, double b) { double pre_sigmoid_activation = 0.0; for(int j=0; j<n_visible; j++) { pre_sigmoid_activation += w[j] * v[j]; } pre_sigmoid_activation += b; return sigmoid(pre_sigmoid_activation); } double RBM::propdown(int *h, int i, double b) { double pre_sigmoid_activation = 0.0; for(int j=0; j<n_hidden; j++) { pre_sigmoid_activation += W[j][i] * h[j]; } pre_sigmoid_activation += b; return sigmoid(pre_sigmoid_activation); } void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \ double *nh_means, int *nh_samples) { sample_v_given_h(h0_sample, nv_means, nv_samples); sample_h_given_v(nv_samples, nh_means, nh_samples); } void RBM::reconstruct(int *v, double *reconstructed_v) { double *h = new double[n_hidden]; double pre_sigmoid_activation; for(int i=0; i<n_hidden; i++) { h[i] = propup(v, W[i], hbias[i]); } for(int i=0; i<n_visible; i++) { pre_sigmoid_activation = 0.0; for(int j=0; j<n_hidden; j++) { pre_sigmoid_activation += W[j][i] * h[j]; } pre_sigmoid_activation += vbias[i]; reconstructed_v[i] = sigmoid(pre_sigmoid_activation); } delete[] h; } // LogisticRegression LogisticRegression::LogisticRegression(int size, int in, int out) { N = size; n_in = in; n_out = out; W = new double*[n_out]; for(int i=0; i<n_out; i++) W[i] = new double[n_in]; b = new double[n_out]; for(int i=0; i<n_out; i++) { for(int j=0; j<n_in; j++) { W[i][j] = 0; } b[i] = 0; } } LogisticRegression::~LogisticRegression() { for(int i=0; i<n_out; i++) delete[] W[i]; delete[] W; delete[] b; } void LogisticRegression::train(int *x, int *y, double lr) { double *p_y_given_x = new double[n_out]; double *dy = new double[n_out]; for(int i=0; i<n_out; i++) { p_y_given_x[i] = 0; for(int j=0; j<n_in; j++) { p_y_given_x[i] += W[i][j] * x[j]; } p_y_given_x[i] += b[i]; } softmax(p_y_given_x); for(int i=0; i<n_out; i++) { dy[i] = y[i] - p_y_given_x[i]; for(int j=0; j<n_in; j++) { W[i][j] += lr * dy[i] * x[j] / N; } b[i] += lr * dy[i] / N; } delete[] p_y_given_x; delete[] dy; } void LogisticRegression::softmax(double *x) { double max = 0.0; double sum = 0.0; for(int i=0; i<n_out; i++) if(max < x[i]) max = x[i]; for(int i=0; i<n_out; i++) { x[i] = exp(x[i] - max); sum += x[i]; } for(int i=0; i<n_out; i++) x[i] /= sum; } void LogisticRegression::predict(int *x, double *y) { for(int i=0; i<n_out; i++) { y[i] = 0; for(int j=0; j<n_in; j++) { y[i] += W[i][j] * x[j]; } y[i] += b[i]; } softmax(y); } void test_dbn() { srand(0); double pretrain_lr = 0.1; int pretraining_epochs = 1000; int k = 1; double finetune_lr = 0.1; int finetune_epochs = 500; int train_N = 6; int test_N = 3; int n_ins = 6; int n_outs = 2; int hidden_layer_sizes[] = {3, 3}; int n_layers = sizeof(hidden_layer_sizes) / sizeof(hidden_layer_sizes[0]); // training data int train_X[6][6] = { {1, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 0, 0}, {1, 1, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 0} }; int train_Y[6][2] = { {1, 0}, {1, 0}, {1, 0}, {0, 1}, {0, 1}, {0, 1} }; // construct DBN DBN dbn(train_N, n_ins, hidden_layer_sizes, n_outs, n_layers); // pretrain dbn.pretrain(*train_X, pretrain_lr, k, pretraining_epochs); // finetune dbn.finetune(*train_X, *train_Y, finetune_lr, finetune_epochs); // test data int test_X[3][6] = { {1, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 0}, {1, 1, 1, 1, 1, 0} }; double test_Y[3][2]; // test for(int i=0; i<test_N; i++) { dbn.predict(test_X[i], test_Y[i]); for(int j=0; j<n_outs; j++) { cout << test_Y[i][j] << " "; } cout << endl; } } int main() { test_dbn(); return 0; }
程序运行结果,是个二维的回归值:
0.493724 0.5062760.493724 0.5062760.493724 0.506276
转载请注明出处:http://blog.csdn.net/cuoqu/article/details/8896636