下图为官方标准中NAL层的句法元素,且以伪代码的形式给出了解码过程:
在HM中由TAppDecTop::decode()调用byteStreamNALUnit(bytestream, nalUnit, stats)实现如上伪代码:
/** * Parse an AVC AnnexB Bytestream bs to extract a single nalUnit * while accumulating bytestream statistics into stats. * * Returns false if EOF was reached (NB, nalunit data may be valid), * otherwise true. */ Bool byteStreamNALUnit( InputByteStream& bs, vector<uint8_t>& nalUnit, AnnexBStats& stats) { Bool eof = false; try { _byteStreamNALUnit(bs, nalUnit, stats); //!< 实际完成NAL解析工作的函数 } catch (...) //!< 捕获所有异常 { eof = true; } stats.m_numBytesInNALUnit = UInt(nalUnit.size()); return eof; }
在分析NAL解析过程之前,先介绍几个会被调用到的子函数,以便更好地理解解析过程。
1. Bool eofBeforeNBytes(UInt n)
如果在读码流的接下来的n字节的过程中遇到了文件结束符,则该函数返回true,否则返回false。
/** * returns true if an EOF will be encountered within the next * n bytes. */ Bool eofBeforeNBytes(UInt n) { assert(n <= 4); if (m_NumFutureBytes >= n) //!< m_NumFutureBytes大于等于n只会在该函数被调用2次及2次以上的情况下发生,满足该条件时无须继续读多余的字节,故返回false return false; n -= m_NumFutureBytes; //!< n先减去m_NumFutureBytes的目的是防止被函数peekBytes调用时再读入接下来的n字节数据 try { for (UInt i = 0; i < n; i++) { m_FutureBytes = (m_FutureBytes << 8) | m_Input.get(); //!< 每次读入一个字节,循环结束后,m_FutureBytes存放的是读入的n个字节的数据 m_NumFutureBytes++; } } catch (...) //!< 出现异常即读到文件结尾,返回true { return true; } return false; }
2. uint32_t peekBytes(UInt n)
该函数在不移动文件指针的前提下返回文件中接下来的n字节。实现的即是伪代码中的next_bits(n)的功能。
/** * return the next n bytes in the stream without advancing * the stream pointer. * * Returns: an unsigned integer representing an n byte bigendian * word. * * If an attempt is made to read past EOF, an n-byte word is * returned, but the portion that required input bytes beyond EOF * is undefined. * */ uint32_t peekBytes(UInt n) { eofBeforeNBytes(n); return m_FutureBytes >> 8*(m_NumFutureBytes - n); //!< 若m_NumFutureBytes=4, n=3,则返回m_FutureBytes左移8位后(即有效数据位为3字节)的数据 }
3. uint8_t readByte()
该函数读文件的一个字节并返回。
/** * consume and return one byte from the input. * * If bytestream is already at EOF prior to a call to readByte(), * an exception std::ios_base::failure is thrown. */ uint8_t readByte() { if (!m_NumFutureBytes) //!< m_FutureBytes为NULL,则从文件中读入一个字节并返回 { uint8_t byte = m_Input.get(); return byte; }//! m_FutureBytes非NULL,则从它当中取出一个字节出来 m_NumFutureBytes--; //!< 计数值减1 uint8_t wanted_byte = m_FutureBytes >> 8*m_NumFutureBytes; //!< m_FutureBytes为4字节,取出有效数据中的最高字节 m_FutureBytes &= ~(0xff << 8*m_NumFutureBytes); //!< 对应位置的数据清零 return wanted_byte; }
4. uint32_t readBytes(UInt n)
该函数读文件的n个字节并返回。
/** * consume and return n bytes from the input. n bytes from * bytestream are interpreted as bigendian when assembling * the return value. */ uint32_t readBytes(UInt n) { uint32_t val = 0; for (UInt i = 0; i < n; i++) val = (val << 8) | readByte(); //!< 每次调用readByte()读入一个字节,通过对val左移8位且与输入值进行或运算实现将n个字节存储到val这个变量中 return val; }