- java包扫描
Java__攻城狮
java开发语言spring
packagecom.mashang.test03;importorg.springframework.core.io.Resource;importorg.springframework.core.io.support.PathMatchingResourcePatternResolver;importorg.springframework.core.io.support.ResourcePat
- 直方图匹配(Histogram Matching)
姜太公钓鲸233
计算机视觉人工智能机器学习
直方图匹配(HistogramMatching),也被称为直方图规定化(HistogramSpecification)或直方图修正(HistogramEqualization),是一种图像处理技术,用于调整图像的直方图,以使其与某个目标直方图相匹配。目标直方图通常是用户定义的或者是希望获得的期望分布。直方图匹配的目标是改变图像的像素值分布,从而使其在视觉上更接近目标直方图。这对于图像增强、风格迁移
- OpenCV-模板匹配多个目标
红米煮粥
opencv人工智能计算机视觉
文章目录一、基本概念二、基本步骤1.图像准备2.图像预处理3.执行模板匹配4.定位匹配区域5.处理多个匹配6.优化和验证三、代码实现1.图片读取2.图像预处理3.模板匹配4.绘制矩形框三、总结模型匹配(ModelMatching)是一个广泛应用的概念,其具体含义和应用领域会根据上下文的不同而有所变化。一、基本概念模型匹配是指通过比较待匹配的数据或对象与已有的模型之间的相似度或距离,来寻找最佳匹配的
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- ERROR: No matching distribution found for torch-geometri satisfies the requirement torch-geometric
zzzzz忠杰
笔记pytorchpython深度学习
试了网上的whl下载确保虚拟环境下nvcc和cuda版本一致,还不行遂找淘宝大佬,大佬换了pytorch版本python版本都不行最后根据报错出现的setup安装了pytest-runner,然后pipsearch。再pipinstalltorch-geometric的时候就成功了pipinstallpytest-runnerpipsearchtorch-geometricpipinstallto
- 解决安装依赖项时的ERROR: No matching distribution found for torch==1.10.0+cu111问题
CAI2256
python深度学习神经网络pytorch
这个错误通常是由于没有找到与你尝试安装的torch==1.10.0+cu111版本相匹配的Python包分发版本所致。在这种情况下,+cu111表示你正在安装针对CUDA11.1的Torch版本。因此,你需要确保你的环境中已经安装了CUDA11.1,并且你正在使用与之兼容的Torch版本。如果你使用的是Anaconda或Miniconda等Python环境管理工具,你可以尝试使用以下命令来安装CU
- ERROR: No matching distribution found for torch==1.12.0+cu113
YungJZ
日积月累python
原因pipinstalltorch==1.12.0+cu113用pip安装torch时,出现:ERROR:Nomatchingdistributionfoundfortorch==1.12.0+cu113好像不少用清华源的会出现这个问题解决办法pytorch官网:https://pytorch.org/get-started/previous-versions/找到所需要的版本,用conda下载即
- ERROR: No matching distribution found for torch==1.4.0 (from torchvision)
迷雾总会解
机器学习/深度学习坑pythonpytorch
错误描述今天在安装torchvision出现了一个错误:解决方案一看就知道是版本的问题对吧。torchvision版本与torch版本不匹配。只要指定好版本就行。pipinstall--no-depstorchvision==0.5.0下面是cuda版本,Torch版本,Torchvision版本以及python版本的对应关系做了一个表,仅供大家参考
- 解决问题:ERROR: No matching distribution found for torch==1.12.1+cu102
失合
python深度学习pytorch
conda虚拟环境安装pytorch10.2时出现报错:ERROR:Couldnotfindaversionthatsatisfiestherequirementtorch==1.12.1+cu102(fromversions:1.7.0,1.7.1,1.8.0,1.8.1,1.9.0,1.9.1,1.10.0,1.10.1,1.10.2,1.11.0,1.12.0,1.12.1,1.13.0,1
- DEFT 开源项目教程
马安柯Lorelei
DEFT开源项目教程DEFTJointdetectionandtrackingmodelnamedDEFT,or``DetectionEmbeddingsforTracking."Ourapproachreliesonanappearance-basedobjectmatchingnetworkjointly-learnedwithanunderlyingobjectdetectionnetwor
- 【小白深度教程 1.5】手把手教你用立体匹配进行双目深度估计,以及 3D 点云生成(含 Python 代码解读)
小寒学姐学AI
从零开始的深度补全和深度估计3dpython人工智能计算机视觉自动驾驶深度学习笔记
【小白深度教程1.5】手把手教你用立体匹配进行双目深度估计,以及3D点云生成(含Python代码解读)1.立体匹配的原理2.块匹配算法(BlockMatchingAlgorithm)2.1代码中的立体匹配过程概述2.2代码原理及公式2.2.1.窗口匹配和代价函数(SAD)2.2.2.匹配过程2.2.3.视差图生成2.3代码的整体算法流程2.4性能与优化3.加载双目图像计算视差4.读取相机参数并计算
- 【JupyterLab】pip安装过程问题记录(未完)
iku!!
pipJupyterLab
1、使用以下命令安装报错pipinstalljupyterlabERROR:Couldnotfindaversionthatsatisfiestherequirementjupyterlab(fromversions:none)ERROR:Nomatchingdistributionfoundforjupyterlab2、修改运行命令仍然出现报错pipinstalljupyterlab-ihttp
- Open3D 点云配准-Ransac算法(粗配准)
白葵新
算法人工智能python计算机视觉图像处理3d
目录一、概述1.1简介1.2RANSAC在点云粗配准中的应用步骤二、代码实现2.1关键函数2.2完整代码2.3代码解析2.3.1计算FPFH1.法线估计2.计算FPFH特征2.3.2全局配准1.函数:execute_global_registration2.距离阈值3.registration_ransac_based_on_feature_matching函数三、实现效果3.1原始点云3.2配准
- ERROR: No matching distribution found for distutils 解决办法
gs80140
python
pipinstalldistutils-ihttps://pypi.doubanio.com/simpleLookinginindexes:https://pypi.doubanio.com/simpleERROR:Couldnotfindaversionthatsatisfiestherequirementdistutils(fromversions:none)ERROR:Nomatchingd
- 3.实现nginx pod基于service name调用tomcat pod
哆啦A梦_ca52
修改为3个podroot@master:/opt/k8s-data/ymal/test#vimnginx-test-v1.yamlreplicas:3#tellsdeploymenttorun2podsmatchingthetemplateroot@master:/opt/k8s-data/ymal/test#kubectlapply-fnginx-test-v1.yaml查看增加ip地址的信息r
- Elasticsearch搜索中的部分匹配
小强签名设计
Elasticsearchelasticsearch搜索部分匹配
本文绝大部分内容来自http://www.cnblogs.com/richaaaard/p/5254285.html,其中部分内容做了添加和修改。摘要到目前为止,我们介绍的所有查询都是基于完整术语的,为了匹配,最小的单元为单个术语,我们只能查找反向索引中存在的术语。但是,如果我们想匹配部分术语而不是全部改怎么办?部分匹配(Partialmatching)允许用户指定查找术语的一部分,然后找出所有包
- 使用python -m pip install -r requirements.txt安装yolov5出现问题
小白yaa
Python问题pythonpipYOLO
出现问题:ERROR:Couldnotfindaversionthatsatisfiestherequirementmatplotlib>=3.3(fromversions:none)ERROR:Nomatchingdistributionfoundformatplotlib>=3.3原因分析:我打开了代理服务器,这时我们使用的清华镜像源就不能使用了解决办法:关闭代理服务器即可。
- 【报错解决】expected single matching bean but found 2
我梦Leo
报错解决javaspring
文章目录报错信息展示:项目背景:报错还原:原因分析:解决方案:方案一:使用@Qualifier注解来指明注入的实例。方案二:使用@Resource(name="Xxxservice")注解来指明注入的实例。补充说明:拓展:@AutoWired、@Resource、@Qualifier理解我立志做一名把细节都说清楚的博主,欢迎关注~原创不易,有帮助还请鼓励个【赞】哦,谢谢无敌可爱帅气又迷人的小哥哥、
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- TBB中的join节点的Reservation
fpcc
并行编程C++11C++并行编程
一、join_node的策略join_node的策略有四种方式,即queueing、reserving、key_matching和tag_matching。其实这个好理解,可以结合节点类型中的缓冲节点和它进行对比。在前面分析过,join_node就是一个多对一的处理节点,它最重要的方式就是从多个输入中组成一个元组的消息然后将其传输到输出节点。但join_node有一个需要注意的特点,即如果它无法从
- 【机器学习】4. 相似性比较(二值化数据)与相关度(correlation)
pen-ai
机器学习机器学习人工智能scikit-learnpython
SMCSimpleMatchingCoefficient评估两组二进制数组相似性的参数SMC=(f11+f00)/(f01+f10+f11+f00)其中,f11表示两组都为1的组合个数,f10表示第一组为1,第二组为0的组合个数。这样做会有一个缺点,假设是比较稀疏的数据,如今天去哪一个地区,地区有成千上万个,但是去的只有一个地区。那么就会导致f00非常的大,如此计算的结果SMC必然很大,但是能够代
- Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport论文阅读笔记
猪猪想上树
论文阅读笔记
ConditionalFlowMatching:Simulation-FreeDynamicOptimalTransport笔记发现问题连续正规化流(CNF)是一种有吸引力的生成式建模技术,但在基于模拟的最大似然训练中受到了限制。解决问题介绍一种新的条件流匹配(CFM),一种针对CNFs的免模拟训练目标。具有稳定的回归目标,用于扩散模型中的随机流,但享有确定性流模型的有效推断。与扩散模型和CNF目
- MATLAB使用OMP实现图像的压缩感知实例
superdont
计算机视觉入门matlab计算机视觉图像处理机器学习图像加密人工智能算法
OMP(OrthogonalMatchingPursuit)是一种用于稀疏信号恢复的迭代算法。它的目标是从一组测量值中重建具有少量非零元素的信号。基本步骤以下是OMP算法的简要步骤:初始化残差:将残差初始化为测量向量。迭代过程:a.原子选择:在每次迭代中,从字典中选择与当前残差最相关的原子。b.更新估计:使用所选的原子更新信号的估计。c.更新残差:更新残差,将其减去已匹配的部分。停止条件:重复步骤
- 【MATLAB源码-第154期】基于matlab的OFDM系统多径信道下块状和梳妆两种导频插入方式误码率对比仿真。
Matlab程序猿
OFDM信道估计与均衡MATLABmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述OFDM(OrthogonalFrequencyDivisionMultiplexing,正交频分复用)是一种高效的无线信号传输技术,广泛应用于现代通信系统,如Wi-Fi、LTE和5G。OFDM通过将宽带信道划分为多个正交的窄带子载波来传输数据,有效地提高了频谱利用率并降低了多径传播引起的干扰。接下来,我们将详细讨论OFDM系统的关键组成部分,包括导频、
- 解决pycharm中PIL安装失败
naughty0809
树莓派pythonpycharm
问题:在调用pil时显示pil标红我在设置中下载每次失败,显示ERROR:CouldnotfindaversionthatsatisfiestherequirementPIL(fromversions:none)ERROR:NomatchingdistributionfoundforPIL我尝试了很久,查看了一些博客(PIL库在PyCharm安装失败解决办法_pycharm安装pil失败-CSDN
- python 实现简单的按关键字、后缀进行本地文件搜索
ReCombination
pythonpyqt
上代码:defLocalFileMatching(source:Union[str,list,tuple,None]=None,postfix:Union[str,list,tuple,None]=None,keyword:Union[str,list,tuple]='',exact:Union[bool]=False)->list|str:occasional_dict=defaultdict(
- 【图像配准】CVPRW21 - 深度特征匹配 DFM
我是大黄同学呀
读点论文-其他深度学习计算机视觉人工智能
文章目录相识相知回顾收录于CVPR2021ImageMatchingWorkshop,github地址:https://github.com/ufukefe/DFM相识图像配准(ImageRegistration)是计算机视觉领域中的一项重要任务,其旨在将不同角度/时间/模态等条件下获取的两张或多张图像进行匹配、叠加。图像匹配的核心在于找到每两幅图像间的对应关系(可以通过这个对应关系进行相互映射)
- DFM-无监督图像匹配
alex1801
深度学习图像配准匹配图像拼接
DFM:APerformanceBaselineforDeepFeatureMatching(深度特征匹配的性能基准)2021.06.14摘要提出了一种新的图像匹配方法,利用现成的深度神经网络提取的学习特征来获得良好的图像匹配效果。该方法使用预训练的VGG结构作为特征提取器,不需要任何额外的训练来提高匹配。灵感来自心理学领域成熟的概念,如心理旋转,初始扭曲是作为初步几何变换估计的结果而执行的(an
- 【计算机科学引论 Computing Essentials 2021】【名词术语】【第2章】
不是AI
英文干货大宗技术计算机网络
MATCHINGMatcheachnumbereditemwiththemostcloselyrelatedlettereditem.Writeyouranswersinthespacesprovided.Choicesa.chatb.C2Cc.communicatingd.e-maile.Internetf.ISPg.LinkedInh.microblogi.searchservicesj.bl
- 【计算机科学引论 Computing Essentials 2021】【名词术语】【第3章】
不是AI
英文干货大宗技术网络
MATCHINGMatcheachnumbereditemwiththemostcloselyrelatedlettereditem.Writeyouranswersinthespacesprovided.Choicesa.buttonsb.cloudc.databased.galleriese.imageeditorf.pixelsg.spreadsheeth.storei.utilityj.w
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在