线段树

线段树(1)(转载的呀)--41℃ Programmer.mht

 

 

 线段树基础知识

从简单说起,线段树其实可以理解成一种特殊的二叉树。但是这种二叉树较为平衡,和静态二叉树一样,都是提前已经建立好的树形结构。针对性强,所以效率要高。这里又想到了一句题外话:动态和静态的差别。动态结构较为灵活,但是速度较慢;静态结构节省内存,速度较快。
接着回到线段树上来,线段树是建立在线段的基础上,每个结点都代表了一条线段[a , b]。长度为1的线段成为元线段。非元线段都有两个子结点,左结点代表的线段为[a , (a + b ) / 2],右结点代表的线段为[( a + b ) / 2 , b]。
图一就是一棵长度范围为[1 , 10]的线段树。
长度范围为[1 , L] 的一棵线段树的深度为log ( L - 1 ) + 1。这个显然,而且存储一棵线段树的空间复杂度为O(L)。
线段树支持最基本的操作为插入和删除一条线段。下面已插入为例,详细叙述,删除类似。
将一条线段[a , b] 插入到代表线段[l , r]的结点p中,如果p不是元线段,那么令mid=(l+r)/2。如果a<mid,那么将线段[a , b] 也插入到p的左儿子结点中,如果b>mid,那么将线段[a , b] 也插入到p的右儿子结点中。
插入(删除)操作的时间复杂度为O ( Log n )。
 
 
上面的都是些基本的线段树结构,但只有这些并不能做什么,就好比一个程序有输入没输出,根本没有任何用处。
最简单的应用就是记录线段有否被覆盖,并随时查询当前被覆盖线段的总长度。那么此时可以在结点结构中加入一个变量int count;代表当前结点代表的子树中被覆盖的线段长度和。这样就要在插入(删除)当中维护这个count值,于是当前的覆盖总值就是根节点的count值了。
另外也可以将count换成bool cover;支持查找一个结点或线段是否被覆盖。

你可能感兴趣的:(线段树)