Eight
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 11425
Accepted: 5073
Special Judge
Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
Source
South Central USA 1998
#include<stdio.h> #include<string.h> int fac[]= {1,1,2,6,24,120,720,5040,40320}; //n! int hash[500000]; int dir[]={-1,-3,1,3}; char a[15]; char ans[]="123456780"; char ansx[500000]={0}; bool move[][4] = {0,0,1,1, 1,0,1,1, 1,0,0,1, 0,1,1,1, 1,1,1,1, 1,1,0,1, 0,1,1,0, 1,1,1,0, 1,1,0,0}; struct ss { int pre; int idx; int step; char x[15]; }t[500000]; int getkey(char *seq) { int i,j,cnt,key=0; for(i=0; i<9; i++) { cnt=0; for(j=0; j<i; j++) if(seq[j]>seq[i]) cnt++; key+=cnt*fac[i]; // cnt<=i } return key; } bool input() { char str[10]; int num=0; for(int i=1; i<=9; i++) { if(scanf("%s",str)==EOF) return false; if(str[0]=='x') a[num++]='0'; else a[num++]=str[0]; } return true; } void GetDir(int h) { memset(ansx,0,sizeof(ansx)); int n=t[h].step; for(int i=n;i>=1;i--) { if(t[h].idx==0) ansx[i]='l'; else if(t[h].idx==1) ansx[i]='u'; else if(t[h].idx==2) ansx[i]='r'; else if(t[h].idx==3) ansx[i]='d'; h=t[h].pre; } ansx[0]='1'; } int main() { while(input()) { memset(hash,0,sizeof(hash)); int head=0,end=1; int key=getkey(a); hash[key]=1; t[0].pre=-1; t[0].step=0; strcpy(t[0].x,a); int z,zz; while(head<end) { if(strcmp(t[head].x,ans)==0) break; for(int i=0; i<9; i++) if(t[head].x[i]=='0') { z=i; break; } for(int i=0; i<4; i++) { strcpy(a,t[head].x); if(move[z][i]==0) continue; int zz=z+dir[i]; char temp=a[z]; a[z]=a[zz]; a[zz]=temp; int p=getkey(a); if(hash[p]==0) { end++; hash[p]=1; t[end].idx=i; t[end].pre=head; t[end].step=t[head].step+1; strcpy(t[end].x,a); } } head++; } if(head>=end) printf("unsolvable/n"); else { GetDir(head); printf("%s/n",ansx+1); } } return 0; }