The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
递归解法:
class Solution { public: bool check(int row, int* place) { for (int i = 0; i < row; ++i) { int diff = abs(place[i] - place[row]); if (diff == 0 || diff == row - i) return false; } return true; } void placeQueens(int row, int n, int &count, int* place, vector<vector<string> > &result) { if (row == n) { vector<string> tmp; for (int i = 0; i < row; ++i) { string str(n, '.'); str[place[i]] = 'Q'; tmp.push_back(str); } result.push_back(tmp); return; } for (int i = 0; i < n; ++i) { place[row] = i; if (check(row, place)) placeQueens(row+1, n, count, place, result); } } vector<vector<string> > solveNQueens(int n) { // Start typing your C/C++ solution below // DO NOT write int main() function int* place = new int[n]; int count = 0; vector<vector<string> > result; placeQueens(0, n, count, place, result); return result; } };