本篇文章主要内容来自于Android Doc,我翻译之后又做了些加工,英文好的朋友也可以直接去读原文。
http://developer.android.com/training/displaying-bitmaps/index.html
我们在编写Android程序的时候经常要用到许多图片,不同图片总是会有不同的形状、不同的大小,但在大多数情况下,这些图片都会大于我们程序所需要的大小。比如说系统图片库里展示的图片大都是用手机摄像头拍出来的,这些图片的分辨率会比我们手机屏幕的分辨率高得多。大家应该知道,我们编写的应用程序都是有一定内存限制的,程序占用了过高的内存就容易出现OOM(OutOfMemory)异常。我们可以通过下面的代码看出每个应用程序最高可用内存是多少。
int maxMemory = (int) (Runtime.getRuntime().maxMemory() / 1024); Log.d("TAG", "Max memory is " + maxMemory + "KB");
BitmapFactory这个类提供了多个解析方法(decodeByteArray, decodeFile, decodeResource等)用于创建Bitmap对象,我们应该根据图片的来源选择合适的方法。比如SD卡中的图片可以使用decodeFile方法,网络上的图片可以使用decodeStream方法,资源文件中的图片可以使用decodeResource方法。这些方法会尝试为已经构建的bitmap分配内存,这时就会很容易导致OOM出现。为此每一种解析方法都提供了一个可选的BitmapFactory.Options参数,将这个参数的inJustDecodeBounds属性设置为true就可以让解析方法禁止为bitmap分配内存,返回值也不再是一个Bitmap对象,而是null。虽然Bitmap是null了,但是BitmapFactory.Options的outWidth、outHeight和outMimeType属性都会被赋值。这个技巧让我们可以在加载图片之前就获取到图片的长宽值和MIME类型,从而根据情况对图片进行压缩。如下代码所示:
BitmapFactory.Options options = new BitmapFactory.Options(); options.inJustDecodeBounds = true; BitmapFactory.decodeResource(getResources(), R.id.myimage, options); int imageHeight = options.outHeight; int imageWidth = options.outWidth; String imageType = options.outMimeType;
现在图片的大小已经知道了,我们就可以决定是把整张图片加载到内存中还是加载一个压缩版的图片到内存中。以下几个因素是我们需要考虑的:
比如,你的ImageView只有128*96像素的大小,只是为了显示一张缩略图,这时候把一张1024*768像素的图片完全加载到内存中显然是不值得的。
那我们怎样才能对图片进行压缩呢?通过设置BitmapFactory.Options中inSampleSize的值就可以实现。比如我们有一张2048*1536像素的图片,将inSampleSize的值设置为4,就可以把这张图片压缩成512*384像素。原本加载这张图片需要占用13M的内存,压缩后就只需要占用0.75M了(假设图片是ARGB_8888类型,即每个像素点占用4个字节)。下面的方法可以根据传入的宽和高,计算出合适的inSampleSize值:
public static int calculateInSampleSize(BitmapFactory.Options options, int reqWidth, int reqHeight) { // 源图片的高度和宽度 final int height = options.outHeight; final int width = options.outWidth; int inSampleSize = 1; if (height > reqHeight || width > reqWidth) { // 计算出实际宽高和目标宽高的比率 final int heightRatio = Math.round((float) height / (float) reqHeight); final int widthRatio = Math.round((float) width / (float) reqWidth); // 选择宽和高中最小的比率作为inSampleSize的值,这样可以保证最终图片的宽和高 // 一定都会大于等于目标的宽和高。 inSampleSize = heightRatio < widthRatio ? heightRatio : widthRatio; } return inSampleSize; }
public static Bitmap decodeSampledBitmapFromResource(Resources res, int resId, int reqWidth, int reqHeight) { // 第一次解析将inJustDecodeBounds设置为true,来获取图片大小 final BitmapFactory.Options options = new BitmapFactory.Options(); options.inJustDecodeBounds = true; BitmapFactory.decodeResource(res, resId, options); // 调用上面定义的方法计算inSampleSize值 options.inSampleSize = calculateInSampleSize(options, reqWidth, reqHeight); // 使用获取到的inSampleSize值再次解析图片 options.inJustDecodeBounds = false; return BitmapFactory.decodeResource(res, resId, options); }
mImageView.setImageBitmap( decodeSampledBitmapFromResource(getResources(), R.id.myimage, 100, 100));
在你应用程序的UI界面加载一张图片是一件很简单的事情,但是当你需要在界面上加载一大堆图片的时候,情况就变得复杂起来。在很多情况下,(比如使用ListView, GridView 或者 ViewPager 这样的组件),屏幕上显示的图片可以通过滑动屏幕等事件不断地增加,最终导致OOM。
为了保证内存的使用始终维持在一个合理的范围,通常会把被移除屏幕的图片进行回收处理。此时垃圾回收器也会认为你不再持有这些图片的引用,从而对这些图片进行GC操作。用这种思路来解决问题是非常好的,可是为了能让程序快速运行,在界面上迅速地加载图片,你又必须要考虑到某些图片被回收之后,用户又将它重新滑入屏幕这种情况。这时重新去加载一遍刚刚加载过的图片无疑是性能的瓶颈,你需要想办法去避免这个情况的发生。
这个时候,使用内存缓存技术可以很好的解决这个问题,它可以让组件快速地重新加载和处理图片。下面我们就来看一看如何使用内存缓存技术来对图片进行缓存,从而让你的应用程序在加载很多图片的时候可以提高响应速度和流畅性。
内存缓存技术对那些大量占用应用程序宝贵内存的图片提供了快速访问的方法。其中最核心的类是LruCache (此类在android-support-v4的包中提供) 。这个类非常适合用来缓存图片,它的主要算法原理是把最近使用的对象用强引用存储在 LinkedHashMap 中,并且把最近最少使用的对象在缓存值达到预设定值之前从内存中移除。
在过去,我们经常会使用一种非常流行的内存缓存技术的实现,即软引用或弱引用 (SoftReference or WeakReference)。但是现在已经不再推荐使用这种方式了,因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用和弱引用变得不再可靠。另外,Android 3.0 (API Level 11)中,图片的数据会存储在本地的内存当中,因而无法用一种可预见的方式将其释放,这就有潜在的风险造成应用程序的内存溢出并崩溃。
为了能够选择一个合适的缓存大小给LruCache, 有以下多个因素应该放入考虑范围内,例如:
并没有一个指定的缓存大小可以满足所有的应用程序,这是由你决定的。你应该去分析程序内存的使用情况,然后制定出一个合适的解决方案。一个太小的缓存空间,有可能造成图片频繁地被释放和重新加载,这并没有好处。而一个太大的缓存空间,则有可能还是会引起 java.lang.OutOfMemory 的异常。
下面是一个使用 LruCache 来缓存图片的例子:
private LruCache<String, Bitmap> mMemoryCache; @Override protected void onCreate(Bundle savedInstanceState) { // 获取到可用内存的最大值,使用内存超出这个值会引起OutOfMemory异常。 /* LruCache通过构造函数传入缓存值,以KB为单位。*/ int maxMemory = (int) (Runtime.getRuntime().maxMemory() / 1024); /* 使用最大可用内存值的1/8作为缓存的大小。*/ int cacheSize = maxMemory / 8; mMemoryCache = new LruCache<String, Bitmap>(cacheSize) { @Override protected int sizeOf(String key, Bitmap bitmap) { // 重写此方法来衡量每张图片的大小,默认返回图片数量。 return bitmap.getByteCount() / 1024; } }; } /*通过key——value形式 将BitMap添加到缓存中*/ public void addBitmapToMemoryCache(String key, Bitmap bitmap) { if (getBitmapFromMemCache(key) == null) { mMemoryCache.put(key, bitmap); } } /*根据 key 从缓存中取出BitMap*/ public Bitmap getBitmapFromMemCache(String key) { return mMemoryCache.get(key); }
public void loadBitmap(int resId, ImageView imageView) { final String imageKey = String.valueOf(resId); final Bitmap bitmap = getBitmapFromMemCache(imageKey); /* 如果内存缓存中有这个BitMap对象直接使用 */ if (bitmap != null) { imageView.setImageBitmap(bitmap); } /* 如果内存缓存没有从本地SD卡缓存中查找如果有直接使用,并增加到内存缓存中 */ else if("SD卡缓存中有这个BitMap") { imageView.setImageBitmap(bitmap); addBitmapToMemoryCache(resId, bitmap); } /* 本地SD卡没有缓存那么开启线程 从网络下载 并且添加到 mMemoryCache内存缓存中 */ else{ BitmapWorkerTask task = new BitmapWorkerTask(imageView); task.execute(resId); } }BitmapWorkerTask 还要把新加载的图片的键值对放到缓存中
class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap> { private ImageView imageview; public BitmapWorkerTask(ImageView imageview){ this.imageview = imageview; } // 网络加载图片。 @Override protected Bitmap doInBackground(Integer... params) { // 进行网络操作下载图片转换为BitMap格式,将其更新ImageView上 并且add进LruCache 的缓存中(同时可以缓存早本地SD卡中) /* 这里可以结合使用上面的方法 对图片进行压缩等一系列处理 */ addBitmapToMemoryCache(String.valueOf(params[0]), bitmap); // add进LruCache 的缓存中 return bitmap; } @Override protected void onPostExecute(Bitmap bitmap) { imageView.setImageBitmap(bitmap); // 更新到ImageView上 super.onPostExecute(bitmap); } }
原文地址:http://blog.csdn.net/guolin_blog/article/details/9316683