http://blog.csdn.net/jia20003/article/details/9116931
一:图像金字塔基本操作
对一张图像不断的模糊之后向下采样,得到不同分辨率的图像,同时每次得到的
新的图像宽与高是原来图像的1/2, 最常见就是基于高斯的模糊之后采样,得到的
一系列图像称为高斯金字塔。
高斯金字塔不同(DoG)又称为拉普拉斯金字塔,其计算公式如下:
L(i) = G(i) – expand(G(i+1))
第i层拉普拉斯金字塔是由第i层高斯金字塔减去第i+1层高斯金字塔expand之后得到。
本文得到的DoG(Difference of Gaussian)结果如下:
二:关键代码解析
金字塔reduce操作实现代码如下:
private BufferedImage pyramidReduce(BufferedImage src) { int width = src.getWidth(); int height = src.getHeight(); BufferedImage dest = createSubCompatibleDestImage(src, null); int[] inPixels = new int[width*height]; int ow = width/2; int oh = height/2; int[] outPixels = new int[ow*oh]; getRGB(src, 0, 0, width, height, inPixels ); int inRow=0, inCol = 0, index = 0, oudex =0, ta = 0; float[][] keneralData = this.getHVGaussianKeneral(); for(int row=0; row<oh; row++) { for(int col=0; col<ow; col++) { inRow = 2* row; inCol = 2* col; if(inRow >= height) { inRow = 0; } if(inCol >= width) { inCol = 0; } float sumRed = 0, sumGreen = 0, sumBlue = 0; for(int subRow = -2; subRow <= 2; subRow++) { int inRowOff = inRow + subRow; if(inRowOff >= height || inRowOff < 0) { inRowOff = 0; } for(int subCol = -2; subCol <= 2; subCol++) { int inColOff = inCol + subCol; if(inColOff >= width || inColOff < 0) { inColOff = 0; } index = inRowOff * width + inColOff; ta = (inPixels[index] >> 24) & 0xff; int red = (inPixels[index] >> 16) & 0xff; int green = (inPixels[index] >> 8) & 0xff; int blue = inPixels[index] & 0xff; sumRed += keneralData[subRow + 2][subCol + 2] * red; sumGreen += keneralData[subRow + 2][subCol + 2] * green; sumBlue += keneralData[subRow + 2][subCol + 2] * blue; } } oudex = row * ow + col; outPixels[oudex] = (ta << 24) | (clamp(sumRed) << 16) | (clamp(sumGreen) << 8) | clamp(sumBlue); } } setRGB( dest, 0, 0, ow, oh, outPixels ); return dest; }金字塔expand实现代码如下:
public BufferedImage pyramidExpand(BufferedImage src) { int width = src.getWidth(); int height = src.getHeight(); int[] inPixels = new int[width*height]; getRGB(src, 0, 0, width, height, inPixels ); int ow = 2*width; int oh =2*height; int[] outPixels = new int[ow * oh]; int index = 0, outdex = 0, ta = 0; float[][] keneralData = this.getHVGaussianKeneral(); BufferedImage dest = createTwiceCompatibleDestImage(src, null); for(int row=0; row<oh; row++) { for(int col=0; col<ow; col++) { float sumRed = 0, sumGreen = 0, sumBlue = 0; for(int subRow = -2; subRow <= 2; subRow++) { double srcRow = (row + subRow)/2.0; double j = Math.floor(srcRow); double t = srcRow - j; if(t > 0) { continue; } if(srcRow >= height || srcRow < 0) { srcRow = 0; } for(int subCol = -2; subCol <= 2; subCol++) { double srcColOff = (col + subCol)/2.0; j = Math.floor(srcColOff); t = srcColOff - j; if(t > 0) { continue; } if(srcColOff >= width || srcColOff < 0) { srcColOff = 0; } index = (int)(srcRow * width + srcColOff); ta = (inPixels[index] >> 24) & 0xff; int red = (inPixels[index] >> 16) & 0xff; int green = (inPixels[index] >> 8) & 0xff; int blue = inPixels[index] & 0xff; sumRed += keneralData[subRow + 2][subCol + 2] * red; sumGreen += keneralData[subRow + 2][subCol + 2] * green; sumBlue += keneralData[subRow + 2][subCol + 2] * blue; } } outdex = row * ow + col; outPixels[outdex] = (ta << 24) | (clamp(4.0f * sumRed) << 16) | (clamp(4.0f * sumGreen) << 8) | clamp(4.0f * sumBlue); // outPixels[outdex] = (ta << 24) | (clamp(sumRed) << 16) | (clamp(sumGreen) << 8) | clamp(sumBlue); } } setRGB( dest, 0, 0, ow, oh, outPixels ); return dest; }图像金字塔的reduce与expand过程都是卷积采样实现。特别注意的是 expand
操作不是reduce的可逆操作。
关于什么是卷积,高斯滤波请参见博客上的其它相关文章。
高斯金字塔全部算法源代码如下:
package com.gloomyfish.image.pyramid; import java.awt.image.BufferedImage; import java.awt.image.ColorModel; public class PyramidAlgorithm extends GaussianFilter { private float a; public PyramidAlgorithm() { a = 0.4f; } public void setParameter(float p) { this.a = p; } public BufferedImage[] pyramidDown(BufferedImage src, int level) { BufferedImage[] imagePyramids = new BufferedImage[level + 1]; imagePyramids[0] = src; for(int i=1; i<imagePyramids.length; i++) { imagePyramids[i] = pyramidReduce(imagePyramids[i-1]); } return imagePyramids; } public BufferedImage[] pyramidUp(BufferedImage[] srcImage) { BufferedImage[] imagePyramids = new BufferedImage[srcImage.length]; for(int i=0; i<srcImage.length; i++) { imagePyramids[i] = pyramidExpand(srcImage[i]); } return imagePyramids; } /*** * l1 = g1 - expand(g2) * l2 = g2 - expand(g3) * l0 = g0 - expand(g1) * @param reduceImages * @param expandImages * @return */ public BufferedImage[] getLaplacianPyramid(BufferedImage[] reduceImages) { BufferedImage[] laplaciImages = new BufferedImage[reduceImages.length -1]; for(int i=1; i<reduceImages.length; i++) { BufferedImage expandImage = pyramidExpand(reduceImages[i]); laplaciImages[i-1] = createCompatibleDestImage(expandImage, null); int width = reduceImages[i-1].getWidth(); int height = reduceImages[i-1].getHeight(); int ewidth = expandImage.getWidth(); width = (width > ewidth) ? ewidth : width; height = (height > expandImage.getHeight()) ? expandImage.getHeight():height; System.out.println(" width = " + width + " expand width = " + ewidth); int[] reducePixels = new int[width*height]; int[] expandPixels = new int[width*height]; int[] laPixels = new int[width*height]; getRGB( reduceImages[i-1], 0, 0, width, height, reducePixels); getRGB( expandImage, 0, 0, width, height, expandPixels ); int index = 0; int er = 0, eg = 0, eb = 0; for(int row=0; row<height; row++) { int ta = 0, tr = 0, tg = 0, tb = 0; for(int col=0; col<width; col++) { index = row * width + col; ta = (reducePixels[index] >> 24) & 0xff; tr = (reducePixels[index] >> 16) & 0xff; tg = (reducePixels[index] >> 8) & 0xff; tb = reducePixels[index] & 0xff; ta = (expandPixels[index] >> 24) & 0xff; er = (expandPixels[index] >> 16) & 0xff; eg = (expandPixels[index] >> 8) & 0xff; eb = expandPixels[index] & 0xff; tr = tr - er; tg = tg - eg; tb = tb - eb; laPixels[index] = (ta << 24) | (clamp(tr) << 16) | (clamp(tg) << 8) | clamp(tb); } } setRGB( laplaciImages[i-1], 0, 0, width, height, laPixels ); } return laplaciImages; } private BufferedImage pyramidReduce(BufferedImage src) { int width = src.getWidth(); int height = src.getHeight(); BufferedImage dest = createSubCompatibleDestImage(src, null); int[] inPixels = new int[width*height]; int ow = width/2; int oh = height/2; int[] outPixels = new int[ow*oh]; getRGB(src, 0, 0, width, height, inPixels ); int inRow=0, inCol = 0, index = 0, oudex =0, ta = 0; float[][] keneralData = this.getHVGaussianKeneral(); for(int row=0; row<oh; row++) { for(int col=0; col<ow; col++) { inRow = 2* row; inCol = 2* col; if(inRow >= height) { inRow = 0; } if(inCol >= width) { inCol = 0; } float sumRed = 0, sumGreen = 0, sumBlue = 0; for(int subRow = -2; subRow <= 2; subRow++) { int inRowOff = inRow + subRow; if(inRowOff >= height || inRowOff < 0) { inRowOff = 0; } for(int subCol = -2; subCol <= 2; subCol++) { int inColOff = inCol + subCol; if(inColOff >= width || inColOff < 0) { inColOff = 0; } index = inRowOff * width + inColOff; ta = (inPixels[index] >> 24) & 0xff; int red = (inPixels[index] >> 16) & 0xff; int green = (inPixels[index] >> 8) & 0xff; int blue = inPixels[index] & 0xff; sumRed += keneralData[subRow + 2][subCol + 2] * red; sumGreen += keneralData[subRow + 2][subCol + 2] * green; sumBlue += keneralData[subRow + 2][subCol + 2] * blue; } } oudex = row * ow + col; outPixels[oudex] = (ta << 24) | (clamp(sumRed) << 16) | (clamp(sumGreen) << 8) | clamp(sumBlue); } } setRGB( dest, 0, 0, ow, oh, outPixels ); return dest; } public BufferedImage createSubCompatibleDestImage(BufferedImage src, ColorModel dstCM) { if ( dstCM == null ) dstCM = src.getColorModel(); return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(src.getWidth()/2, src.getHeight()/2), dstCM.isAlphaPremultiplied(), null); } public BufferedImage createTwiceCompatibleDestImage(BufferedImage src, ColorModel dstCM) { if ( dstCM == null ) dstCM = src.getColorModel(); return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(src.getWidth()*2, src.getHeight()*2), dstCM.isAlphaPremultiplied(), null); } public BufferedImage pyramidExpand(BufferedImage src) { int width = src.getWidth(); int height = src.getHeight(); int[] inPixels = new int[width*height]; getRGB(src, 0, 0, width, height, inPixels ); int ow = 2*width; int oh =2*height; int[] outPixels = new int[ow * oh]; int index = 0, outdex = 0, ta = 0; float[][] keneralData = this.getHVGaussianKeneral(); BufferedImage dest = createTwiceCompatibleDestImage(src, null); for(int row=0; row<oh; row++) { for(int col=0; col<ow; col++) { float sumRed = 0, sumGreen = 0, sumBlue = 0; for(int subRow = -2; subRow <= 2; subRow++) { double srcRow = (row + subRow)/2.0; double j = Math.floor(srcRow); double t = srcRow - j; if(t > 0) { continue; } if(srcRow >= height || srcRow < 0) { srcRow = 0; } for(int subCol = -2; subCol <= 2; subCol++) { double srcColOff = (col + subCol)/2.0; j = Math.floor(srcColOff); t = srcColOff - j; if(t > 0) { continue; } if(srcColOff >= width || srcColOff < 0) { srcColOff = 0; } index = (int)(srcRow * width + srcColOff); ta = (inPixels[index] >> 24) & 0xff; int red = (inPixels[index] >> 16) & 0xff; int green = (inPixels[index] >> 8) & 0xff; int blue = inPixels[index] & 0xff; sumRed += keneralData[subRow + 2][subCol + 2] * red; sumGreen += keneralData[subRow + 2][subCol + 2] * green; sumBlue += keneralData[subRow + 2][subCol + 2] * blue; } } outdex = row * ow + col; outPixels[outdex] = (ta << 24) | (clamp(4.0f * sumRed) << 16) | (clamp(4.0f * sumGreen) << 8) | clamp(4.0f * sumBlue); // outPixels[outdex] = (ta << 24) | (clamp(sumRed) << 16) | (clamp(sumGreen) << 8) | clamp(sumBlue); } } setRGB( dest, 0, 0, ow, oh, outPixels ); return dest; } }特别注意:我没有处理像素的宽与高,如果宽与高不是偶数可能
会有问题,使用时请自己处理吧。
UI实现源代码如下:
package com.gloomyfish.image.pyramid; import java.awt.BorderLayout; import java.awt.Dimension; import java.awt.FlowLayout; import java.awt.Graphics; import java.awt.MediaTracker; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; import javax.swing.JButton; import javax.swing.JComponent; import javax.swing.JFileChooser; import javax.swing.JFrame; import javax.swing.JPanel; public class PyramidDemoUI extends JComponent implements ActionListener { /** * */ private static final long serialVersionUID = 1L; private JButton upButton; private JButton downButton; private BufferedImage[] reduceImages; private BufferedImage[] expandImages; private BufferedImage sourceImage; private Dimension mySize; private MediaTracker tracker; public PyramidDemoUI(File f) { initComponents(f); } private void initComponents(File f) { // TODO Auto-generated method stub try { sourceImage = ImageIO.read(f); } catch (IOException e1) { e1.printStackTrace(); } tracker = new MediaTracker(this); tracker.addImage(sourceImage, 1); // blocked 10 seconds to load the image data try { if (!tracker.waitForID(1, 10000)) { System.out.println("Load error."); System.exit(1); }// end if } catch (InterruptedException e) { e.printStackTrace(); System.exit(1); }// end catch JPanel btnPanel = new JPanel(); btnPanel.setLayout(new FlowLayout(FlowLayout.RIGHT)); upButton = new JButton("Laplacian Pyramid"); downButton = new JButton("Pyramid Down"); upButton.addActionListener(this); downButton.addActionListener(this); btnPanel.add(upButton); btnPanel.add(downButton); mySize = new Dimension(800, 800); JFrame mainFrame = new JFrame("Pyramid Demo - Gloomyfish"); mainFrame.getContentPane().setLayout(new BorderLayout()); mainFrame.getContentPane().add(this, BorderLayout.CENTER); mainFrame.getContentPane().add(btnPanel, BorderLayout.SOUTH); mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); mainFrame.pack(); mainFrame.setVisible(true); } @Override public Dimension getPreferredSize() { return mySize; } @Override protected void paintComponent(Graphics g) { // g.drawImage(sourceImage, 10, 10, sourceImage.getWidth(), sourceImage.getHeight(), null); int width = 10; // if(reduceImages != null) { // for(int i=1; i<reduceImages.length; i++) { // width += (10 + reduceImages[i-1].getWidth()); // g.drawImage(reduceImages[i], width, 10, reduceImages[i].getWidth(), reduceImages[i].getHeight(), null); // } // } width = 10; if(expandImages != null) { for(int i=0; i<expandImages.length; i++) { g.drawImage(expandImages[i], width, 15, expandImages[i].getWidth(), expandImages[i].getHeight(), null); // g.drawImage(expandImages[i], width, 15 + sourceImage.getHeight(), expandImages[i].getWidth(), expandImages[i].getHeight(), null); width += (10 + expandImages[i].getWidth()); } } super.paintComponent(g); } public static void main(String[] args) { JFileChooser chooser = new JFileChooser(); chooser.showOpenDialog(null); File f = chooser.getSelectedFile(); new PyramidDemoUI(f); } @Override public void actionPerformed(ActionEvent event) { if(event.getActionCommand().equals("Laplacian Pyramid")) { if(reduceImages != null) { // int size = reduceImages.length; PyramidAlgorithm pyramid = new PyramidAlgorithm(); expandImages = pyramid.getLaplacianPyramid(reduceImages); // expandImages = pyramid.pyramidUp(reduceImages); repaint(); } else { } } else if(event.getActionCommand().equals("Pyramid Down")) { // a.Smooth the image with Gaussian filter 5×5(1/4-a/2, 1/4, a, 1/4, 1/4-a/2) a = [0.3,0.6] // b.Sub sample the image by half - 选择偶数行与列 // c.If reached desired size stop, else send the result to step 1 PyramidAlgorithm pyramid = new PyramidAlgorithm(); reduceImages = pyramid.pyramidDown(sourceImage, 3); repaint(); } else { // do nothing } } }转载请务必注明出处-GloomyFish