- 算法方法快速回顾
托塔1
Unity知识快速回顾算法
(待修改)目录1.双指针2.滑动窗口理论基础3.二分查找3.二分查找理论基础4.KMP5.回溯算法6.贪心算法7.动态规划7.1.01背包7.2.完全背包7.3.多重背包8.单调栈9.并查集10.图论10.1.广度优先搜索(BFS)10.2.深度优先搜索(DFS)10.3.Dijkstra算法10.4.Floyd-Warshall算法11.哈希算法12.排序算法12.1.冒泡排序12.2.选择排序
- 算法之01背包问题和完全背包问题
旧巷小新
编程算法
文章目录1.相关解释2.01背包问题2.1空间未优化前2.2空间优化后2.301背包求方案数2.3.1空间未优化2.3.2空间已优化2.401背包问题求路径2.4.1构造出来的路径字典序最大2.4.2构造出来的路径字典序最小3.完全背包问题3.1完全背包问题未优化空间3.1未优化时间复杂度3.1.2优化时间复杂度3.2完全背包问题优化空间3.3恰好装满的方案数4.01背包问题相关应用5.完全背包问
- 蓝桥杯C++基础算法-完全背包(优化为一维)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个完全背包问题的动态规划解法,并且使用了滚动数组来优化空间复杂度。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]和价值w[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与0-1背包问题不同的是,完全背包问题中每个物品可以无限次选择。2.动态规划的概念动态规划是一种常用的算法技巧,用于解决具有重叠子问题和最优子结
- 蓝桥杯C++基础算法-多重背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法。多重背包问题与完全背包问题类似,但每个物品有其数量限制。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]、价值w[i]和数量s[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.动态规划的概念动态规划是一种常用的算法技巧,
- 蓝桥杯C++基础算法-多重背包(优化)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法,并且使用了二进制拆分(或称二进制优化)来优化物品的数量处理。这种方法可以显著减少状态转移的次数,提高算法的效率。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积a、价值b和数量s,以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.二进制
- 动态规划算法求解背包问题的全面剖析
15号外媒
算法
摘要本文深入剖析动态规划算法在求解背包问题中的应用,详细阐述动态规划算法的基本原理、核心要素与解题步骤。通过对0-1背包问题和完全背包问题的具体分析,展示动态规划算法在解决背包问题上的高效性与独特优势。同时,结合实际案例进行算法实现与结果分析,并探讨算法的优化策略与拓展应用,旨在帮助读者全面掌握动态规划算法求解背包问题的方法与技巧。一、引言背包问题作为组合优化领域的经典问题,在资源分配、投资决策、
- 基础算法--背包问题
不会搬砖的淡水鱼
基础算法算法java动态规划贪心算法
背包问题概念完全背包(无限背包)0-1背包概念背包问题是一个经典的组合优化问题,其目标是在给定的一组物品中选择一些物品放入背包中,使得物品的总价值最大化,同时要求背包的总重量不超过背包的容量限制。背包问题有两种常见的变体:完全背包和0-1背包。鉴于完全背包计算过程相对0-1背包简单,这里先讲完全背包。完全背包(无限背包)在完全背包问题中,每个物品可以选择放入背包中的次数是无限的,即可以重复选择。每
- 代码随想录 Day 42 | 【第九章 动态规划 part 05】完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
Accept17
动态规划算法
一、完全背包完全背包视频讲解:带你学透完全背包问题!和01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibilihttps://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.ht
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- Leetcode 刷题笔记1 动态规划part05
平乐君
leetcode笔记动态规划
开始完全背包不同于01背包,完全背包的特色在于元素可以重复拿取,因此在递归公式和遍历顺序上都有些许不同。leetcode518零钱兑换||在组合方式中所用到的递推公式是dp[j]=dp[j-coins[i]]+dp[j]对于coins[i]>j的情况,forjinrange(coin[i],amount+1)不会执行,即实现dp[i][j]=dp[i-1][j]classSolution:defc
- 力扣-动态规划-518 零钱兑换Ⅱ
夏末秋也凉
力扣#动态规划算法
思路dp数组定义:完全背包,不限物品使用次数,使用0-i的硬币,总和小于等于j的组合方式有dp[i][j]个递推公式:if(j>=coins[i])dp[i][j]=dp[i-1][j]+dp[i][j-coins[i]];elsedp[i][j]=dp[i-1][j];dp数组初始化:第一行以及第一列初始化为1遍历顺序:左右,上下时间复杂度:代码classSolution{public:intc
- day37 第九章 动态规划 part05
mvufi
动态规划算法
tips:1.两层for可以理解为是按顺序的。外层物品内层背包,不同物品放进背包只有一种顺序,如a,b,放时要么a在前,要么b在前,只有一种之前定好的物品的顺序;外层背包内层物品,a,b可以有a+b和b+a两种,均计入。引申:排列,ab,ba算两种排列方式组合,ab,ba算一种排列方式,如果只有ab,那也是组合数2.写算法不需要证明,找例子就行完全背包n,bagweight=map(int,inp
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- 贪心算法.
pianmian1
贪心算法算法
贪心算法是指只从当前角度出发,做出当前情景下最好的选择,在某种意义上来说是局部最优解,并不从全局的角度做决策.如果贪心策略选择不恰当,可能无法得到全局最优解.贪心算法的基本流程如下:1.分析问题,确定优化目标,对变量进行初始化2.制定贪心策略:在制定贪心策略时需要证明所选贪心策略一定可以得到全局最优解,若找到反例则推翻当前贪心策略,重新确定贪心策略.完全背包问题本节以完全背包问题为例,说明贪心算法
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- 背包总结——0-1背包及完全背包问题总结及代码模板
Baymax的学习日志
c++动态规划算法c++
背包总结背包问题通常是多种物品有多个属性,且已知条件为某属性被受限,求另一属性的最大/最小/等于/存在不存在。以0-1背包为例解释:n个物品具有的属性为重量和价值,其中总重量C将重量的属性限制住,求最大价值,即求另一属性的特征。针对背包问题:1、先判断属于0-1背包还是完全背包。2、看是求最大值/最小值/等值/是否存在/排列/组合(排列/组合问题通常出现在完全背包中)。确定了背包类型及要求的问题后
- 动态规划——完全背包问题(力扣322: 零钱兑换)
索利亚噶通
动态规划算法
前言这次我们要说的是完全背包问题,还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量01背包问题中每种物品只有一个,只有选与不选两种情况完全背包问题种每种物品有多个,选不选,选多少都是考虑的问题定义:一个背包容积为C,一共N种物品,分别编号0,1,2....i,i+1,.....N-1,第i个物品的重量为weight[i],价值为value[i],每种物品可以选用任意多
- 算法分析与设计(一)——0-1背包问题
冠long馨
数据结构与算法算法动态规划数据结构背包问题
文章目录1三种背包问题详解2最值问题1.10-1背包问题1.2零钱兑换1.3一和零1.4最后一块石头的重量3.恰好背包容量问题4.排列组合问题4.1目标和4.2组合总和Ⅳ在简单复习完数据结构以后,便开始了算法复习。本博客将结合复习视频与LeetCode题目,面向机考算法复习。背包动态规划问题一般分为三种题型:最值问题:给定可选物品和限定容量,求最大价值或者最大体积。①0-1背包问题②完全背包问题。
- [LeetCode-Python版]动态规划——0-1背包和完全背包问题总结
古希腊掌管学习的神
LeetCode-Pythonleetcodepython动态规划
0-1背包有n个物品,第i个物品的体积为wiw_iwi,价值为viv_ivi,每个物品至多选一个,求体积和不超过capacity时的最大价值和状态转移:dfs(i,c)=max(dfs(i−1,c),dfs(i−1,c−w[i])+v[i]dfs(i,c)=max(dfs(i-1,c),dfs(i-1,c-w[i])+v[i]dfs(i,c)=max(dfs(i−1,c),dfs(i−1,c−w[
- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- [动态规划] leetcode 416. 分割等和子集
Mr.Qin_
Java学习Java0-1背包问题动态规划
问题描述: 分割等和子集:给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 例子:输入nums={1,5,11,5};输出true。动态规划求解 这是一个0-1背包问题的变种,也就是每种物品只能选择一次。与之对应的是完全背包问题,选择每种物品的数量是不限制的,可以与另一篇博文对照来看。将非空数组nums,分为两部分,使得两部分的和相
- 动态规划——背包问题
kaili_ya
动态规划算法
动态规划——背包问题背包问题0-1背包问题描述解题思路优化完全背包解题思路优化多重背包解题思路1解题思路2恰好装满问题描述解题思路优化背包问题0-1背包一共有n件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?问题描述假如你要去野营,你有一个容量为6磅的背吧,需要觉得该携带下面的哪些东西。其中每样东西都有相应的价值
- 【算法】动态规划专题⑩ —— 混合背包问题 python
查理零世
动态规划专题算法动态规划python
目录前置知识进入正题总结前置知识【算法】动态规划专题⑤——0-1背包问题+滚动数组优化【算法】动态规划专题⑥——完全背包问题python【算法】动态规划专题⑦——多重背包问题+二进制分解优化python混合背包结合了三种不同类型的背包问题:0/1背包、完全背包和多重背包进入正题混合背包问题https://www.acwing.com/problem/content/description/7/题目
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 动态规划-二维费用的背包问题
炙热的大叔
动态规划动态规划算法
文章目录1.一和零(474)2.盈利计划(879)1.一和零(474)题目描述:状态表示:我们之前的01背包问题以及完全背包问题都是一维的,因为我们只有一个要求或者说是限制那就是背包的容量,但是这里不同这题有两个限制,其实和一个限制是类似的,只不过给数组多加上一维而已。因此我们建立三维数组dp[i][j][k]表示我们在前i个二进制字符串中选择,要求选中的字符串中的0以及1字符的总数分别不能超过i
- 【二维费用的完全背包问题】
羊毛多一点
算法学习动态规划
前言简单写一下算法设计与分析这门课的一次实验原题要求是用0-1背包来做,但是老师要求用完全背包来做!一、完全背包与0-1背包有什么区别?0-1背包,顾名思义对于每件物品只能拿1次或者0次;而完全背包对于每件物品的拿取没有次数限制。二、二维费用背包二维费用背包是对于每件物品的拿取要付出两项代价,如:重量和体积。三、0-1背包理解0-1背包对我们理解其他背包问题十分重要,首先说一下0-1背包。问题描述
- 代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)
jiegongzhu3z
算法leetcode职场和发展
一、完全背包问题相较于01背包,完全背包的显著特征是每个物品可以用无数次,遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。#include#includeusingnamespacestd;intmain(){intN,V;cin>>N>>V;vectorweight(N+1,0);vectorvalue(N+1,0);for(inti=0;i>weight[i]>>value[i];}vec
- 01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别
社恐不参团
算法动态规划
01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别第一次写,真的菜鸡的感性理解,如有理解错误之处,希望评论区多多指导刚开始学背包问题,虽然背代码很容易,但是着实蒙蔽此篇小文希望给新手一些帮助,放代码!//01背包问题for(inti=1;i>v>>w;//边输入边处理for(intj=m;j>=v;j--)//倒叙遍历背包数f[j]=max(f[j],f[j-v]
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb