Hadoop MapReduce之ReduceTask任务执行(一):远程拷贝map输出

reduce执行流程经历三个阶段:copy、sort、reduce,在第一阶段reduce任务会把map的输出拷贝至本地,通过线程MapOutputCopier,该线程通过http协议将map输出拷贝至本地,该copy操作可以并行进行,默认情况下有5个线程执行此操作,如果map数量较大时可以适当调大此值,拷贝时使用http协议,此时reducetask为client,map端以jetty作为web服务器。reduce任务的执行与map一样在Child类启动,但在TaskFinal.run(job,umbilical)进入ReduceTask类执行。reduce的过程比较复杂,本节只分析copy部分,最后会分析整个reduce流程,需要注意的是每个reduce只拷贝自己需要处理那个partition数据。


拷贝map输出结果代码:ReduceTask.java 1309行

/** Loop forever and fetch map outputs as they become available. * The thread exits when it is interrupted by {@link ReduceTaskRunner} */ @Override public void run() { while (true) { try { MapOutputLocation loc = null; long size = -1; //不停查询调度拷贝的集合,如果有数据到来,则说明需要做copy操作 synchronized (scheduledCopies) { while (scheduledCopies.isEmpty()) { scheduledCopies.wait(); } //取出第一个输出位置 loc = scheduledCopies.remove(0); } CopyOutputErrorType error = CopyOutputErrorType.OTHER_ERROR; readError = false; try { shuffleClientMetrics.threadBusy(); start(loc); //开始读取数据并返回长度,这也是下面代码中要分析的函数 size = copyOutput(loc); //更新统计信息 shuffleClientMetrics.successFetch(); error = CopyOutputErrorType.NO_ERROR; } catch (IOException e) { LOG.warn(reduceTask.getTaskID() + " copy failed: " + loc.getTaskAttemptId() + " from " + loc.getHost()); LOG.warn(StringUtils.stringifyException(e)); shuffleClientMetrics.failedFetch(); if (readError) { error = CopyOutputErrorType.READ_ERROR; } // Reset size = -1; } finally { shuffleClientMetrics.threadFree(); //当前连接加入copyResults集合 finish(size, error); } } catch (InterruptedException e) { break; // 执行到此步则证明拷贝完成 } catch (FSError e) {//文件系统错误 LOG.error("Task: " + reduceTask.getTaskID() + " - FSError: " + StringUtils.stringifyException(e)); try { umbilical.fsError(reduceTask.getTaskID(), e.getMessage(), jvmContext); } catch (IOException io) { LOG.error("Could not notify TT of FSError: " + StringUtils.stringifyException(io)); } } catch (Throwable th) { String msg = getTaskID() + " : Map output copy failure : " + StringUtils.stringifyException(th); reportFatalError(getTaskID(), th, msg); } } if (decompressor != null) { CodecPool.returnDecompressor(decompressor); } }


下面分析copyOutput函数:ReduceTask.java 1373行

/** Copies a a map output from a remote host, via HTTP. * @param currentLocation the map output location to be copied * @return the path (fully qualified) of the copied file * @throws IOException if there is an error copying the file * @throws InterruptedException if the copier should give up */ private long copyOutput(MapOutputLocation loc ) throws IOException, InterruptedException { // 检查该位置是否还需拷贝 if (copiedMapOutputs.contains(loc.getTaskId()) || obsoleteMapIds.contains(loc.getTaskAttemptId())) { return CopyResult.OBSOLETE; } // 内存写满时需要用到的临时文件 TaskAttemptID reduceId = reduceTask.getTaskID(); Path filename = new Path(String.format( MapOutputFile.REDUCE_INPUT_FILE_FORMAT_STRING, TaskTracker.OUTPUT, loc.getTaskId().getId())); // Copy the map output to a temp file whose name is unique to this attempt Path tmpMapOutput = new Path(filename+"-"+id); // 开始拷贝map的输出 MapOutput mapOutput = getMapOutput(loc, tmpMapOutput, reduceId.getTaskID().getId()); if (mapOutput == null) { throw new IOException("Failed to fetch map-output for " + loc.getTaskAttemptId() + " from " + loc.getHost()); } // 获得输出尺寸 long bytes = mapOutput.compressedSize; // lock the ReduceTask while we do the rename synchronized (ReduceTask.this) { if (copiedMapOutputs.contains(loc.getTaskId())) { mapOutput.discard(); return CopyResult.OBSOLETE; } // Special case: discard empty map-outputs if (bytes == 0) { try { mapOutput.discard(); } catch (IOException ioe) { LOG.info("Couldn't discard output of " + loc.getTaskId()); } // Note that we successfully copied the map-output noteCopiedMapOutput(loc.getTaskId()); return bytes; } // 判断是否完全在内存中,根据具体情况执行不同分支 if (mapOutput.inMemory) { // 如果完全在内存中则放入内存文件的集合中 mapOutputsFilesInMemory.add(mapOutput); } else { // Rename the temporary file to the final file; // ensure it is on the same partition tmpMapOutput = mapOutput.file; filename = new Path(tmpMapOutput.getParent(), filename.getName()); if (!localFileSys.rename(tmpMapOutput, filename)) { localFileSys.delete(tmpMapOutput, true); bytes = -1; throw new IOException("Failed to rename map output " + tmpMapOutput + " to " + filename); } synchronized (mapOutputFilesOnDisk) { addToMapOutputFilesOnDisk(localFileSys.getFileStatus(filename)); } } // Note that we successfully copied the map-output noteCopiedMapOutput(loc.getTaskId()); } return bytes; }


getMapOutput函数负责拷贝输出的工作,利用URLConnection建立连接,url格式类似:http://PC-20130917RGUY:50060/mapOutput?job=job_201311261309_0003&map=attempt_201311261309_0003_m_000000_0&reduce=1 ,包含协议类型:http,主机及端口:PC-20130917RGUY:50060,路径名称:mapOutput,查询参数包含作业名、map任务名、reduce编号:ob=job_201311261309_0003&map=attempt_201311261309_0003_m_000000_0&reduce=1
url会根据这个地址建立连接,并打开一个输入流读取数据。在开始读取前会判断本次的读取是否能全部放入缓存中,这部分缓存使用是有限制的:jvm_heap_size × mapred.job.shuffle.input.buffer.percent × MAX_SINGLE_SHUFFLE_SEGMENT_FRACTION,其中jvm_heap_size可以通过mapred.job.reduce.total.mem.bytes来设置,如果没设置则通过Runtime.getRuntime().maxMemory()来获取,可以通过mapred.child.opts来影响jvm堆的大小,mapred.job.shuffle.input.buffer.percent可以在参数文件中设置,默认为0.7,MAX_SINGLE_SHUFFLE_SEGMENT_FRACTION在当前版本中为一常量值0.25,也就是说加入我们指定jvm堆大小为1024M,那么一个ReduceTask在拷贝时用到的缓存为1024×0.7×0.25=179M,当我们的map输出大于179M时,则直接写入文件.

ReduceTask.java 1373行

private MapOutput getMapOutput(MapOutputLocation mapOutputLoc, Path filename, int reduce) throws IOException, InterruptedException { // 建立url连接 URL url = mapOutputLoc.getOutputLocation(); URLConnection connection = url.openConnection(); InputStream input = setupSecureConnection(mapOutputLoc, connection); // 校验任务ID TaskAttemptID mapId = null; try { mapId = TaskAttemptID.forName(connection.getHeaderField(FROM_MAP_TASK)); } catch (IllegalArgumentException ia) { LOG.warn("Invalid map id ", ia); return null; } TaskAttemptID expectedMapId = mapOutputLoc.getTaskAttemptId(); if (!mapId.equals(expectedMapId)) { LOG.warn("data from wrong map:" + mapId + " arrived to reduce task " + reduce + ", where as expected map output should be from " + expectedMapId); return null; } //判断返回数据长度是否异常 //取得压缩和未压缩长度,后面判断在内存还是硬盘做shuffle long decompressedLength = Long.parseLong(connection.getHeaderField(RAW_MAP_OUTPUT_LENGTH)); long compressedLength = Long.parseLong(connection.getHeaderField(MAP_OUTPUT_LENGTH)); if (compressedLength < 0 || decompressedLength < 0) { LOG.warn(getName() + " invalid lengths in map output header: id: " + mapId + " compressed len: " + compressedLength + ", decompressed len: " + decompressedLength); return null; } //判断reduce编号是否相同 int forReduce = (int)Integer.parseInt(connection.getHeaderField(FOR_REDUCE_TASK)); if (forReduce != reduce) { LOG.warn("data for the wrong reduce: " + forReduce + " with compressed len: " + compressedLength + ", decompressed len: " + decompressedLength + " arrived to reduce task " + reduce); return null; } if (LOG.isDebugEnabled()) { LOG.debug("header: " + mapId + ", compressed len: " + compressedLength + ", decompressed len: " + decompressedLength); } //We will put a file in memory if it meets certain criteria: //1. The size of the (decompressed) file should be less than 25% of // the total inmem fs //2. There is space available in the inmem fs // 判断拷贝的数据能否完全放入内存中,内存计算公式为: JVM堆尺寸×mapred.job.shuffle.input.buffer.percent(0.7)× 1/4 boolean shuffleInMemory = ramManager.canFitInMemory(decompressedLength); // Shuffle MapOutput mapOutput = null; if (shuffleInMemory) { if (LOG.isDebugEnabled()) { LOG.debug("Shuffling " + decompressedLength + " bytes (" + compressedLength + " raw bytes) " + "into RAM from " + mapOutputLoc.getTaskAttemptId()); } //如果可以放入内存,则放入新建立的byte buffer中 mapOutput = shuffleInMemory(mapOutputLoc, connection, input, (int)decompressedLength, (int)compressedLength); } else { if (LOG.isDebugEnabled()) { LOG.debug("Shuffling " + decompressedLength + " bytes (" + compressedLength + " raw bytes) " + "into Local-FS from " + mapOutputLoc.getTaskAttemptId()); } //内存中放不下则放入磁盘中 mapOutput = shuffleToDisk(mapOutputLoc, input, filename, compressedLength); } return mapOutput; }


如果内存足够大,则copy过来的数据直接放入内存中,首先会分配一个byte数组,然后从上面建立的输入流冲取得所需数据。

ReduceTask.java 1646行

private MapOutput shuffleInMemory(MapOutputLocation mapOutputLoc, URLConnection connection, InputStream input, int mapOutputLength, int compressedLength) throws IOException, InterruptedException { // 判断是否有足够内存存放数据,如果没有则等待内存刷新, //刷新内存前会讲输入流置空,所以在这个函数返回为false时需要重新连接,刷新数据时会唤醒内存合并线程 boolean createdNow = ramManager.reserve(mapOutputLength, input); //是否需要重新连接 if (!createdNow) { // Reconnect try { connection = mapOutputLoc.getOutputLocation().openConnection(); input = setupSecureConnection(mapOutputLoc, connection); } catch (IOException ioe) { LOG.info("Failed reopen connection to fetch map-output from " + mapOutputLoc.getHost()); // Inform the ram-manager ramManager.closeInMemoryFile(mapOutputLength); ramManager.unreserve(mapOutputLength); throw ioe; } } //包装输入流 IFileInputStream checksumIn = new IFileInputStream(input,compressedLength); input = checksumIn; // Are map-outputs compressed? if (codec != null) { decompressor.reset(); input = codec.createInputStream(input, decompressor); } // 创建buffer,从输入流读取并填充 byte[] shuffleData = new byte[mapOutputLength]; MapOutput mapOutput = new MapOutput(mapOutputLoc.getTaskId(), mapOutputLoc.getTaskAttemptId(), shuffleData, compressedLength); int bytesRead = 0; try { //循环读取流冲数据至缓存中 int n = input.read(shuffleData, 0, shuffleData.length); while (n > 0) { bytesRead += n; shuffleClientMetrics.inputBytes(n); // indicate we're making progress reporter.progress(); n = input.read(shuffleData, bytesRead, (shuffleData.length-bytesRead)); } if (LOG.isDebugEnabled()) { LOG.debug("Read " + bytesRead + " bytes from map-output for " + mapOutputLoc.getTaskAttemptId()); } //数据读取完毕则关闭输入流 input.close(); } catch (IOException ioe) { LOG.info("Failed to shuffle from " + mapOutputLoc.getTaskAttemptId(), ioe); ..... } // 关闭内存文件,并唤醒内存合并线程 ramManager.closeInMemoryFile(mapOutputLength); // 校验数据读取长度 if (bytesRead != mapOutputLength) { // Inform the ram-manager ramManager.unreserve(mapOutputLength); // Discard the map-output try { mapOutput.discard(); } catch (IOException ignored) { // IGNORED because we are cleaning up LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ignored); } mapOutput = null; throw new IOException("Incomplete map output received for " + mapOutputLoc.getTaskAttemptId() + " from " + mapOutputLoc.getOutputLocation() + " (" + bytesRead + " instead of " + mapOutputLength + ")" ); } ..... return mapOutput; }


如果内存过小不能存放本次读取的数据则直接写入磁盘文件中,我们会在相关目录中看到这个文件如:C:/hadoop/tasklog/taskTracker/hadoop/jobcache/job_201311281345_0001/attempt_201311281345_0001_r_000001_1/output/map_0.out-0

private MapOutput shuffleToDisk(MapOutputLocation mapOutputLoc, InputStream input, Path filename, long mapOutputLength) throws IOException { // 构建本地文件系统文件名 Path localFilename = lDirAlloc.getLocalPathForWrite(filename.toUri().getPath(), mapOutputLength, conf); //创建基于磁盘文件的MapOutput MapOutput mapOutput = new MapOutput(mapOutputLoc.getTaskId(), mapOutputLoc.getTaskAttemptId(), conf, localFileSys.makeQualified(localFilename), mapOutputLength); // 开始数据拷贝 OutputStream output = null; long bytesRead = 0; try { output = rfs.create(localFilename); //讲map输出直接写入磁盘时分配的缓存,固定64K byte[] buf = new byte[64 * 1024]; int n = -1; try { n = input.read(buf, 0, buf.length); } catch (IOException ioe) { readError = true; throw ioe; } while (n > 0) { bytesRead += n; shuffleClientMetrics.inputBytes(n); output.write(buf, 0, n); // indicate we're making progress reporter.progress(); try { n = input.read(buf, 0, buf.length); } catch (IOException ioe) { readError = true; throw ioe; } } LOG.info("Read " + bytesRead + " bytes from map-output for " + mapOutputLoc.getTaskAttemptId()); output.close(); input.close(); } catch (IOException ioe) { LOG.info("Failed to shuffle from " + mapOutputLoc.getTaskAttemptId(), ioe); // Discard the map-output try { mapOutput.discard(); } catch (IOException ignored) { LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ignored); } mapOutput = null; // Close the streams IOUtils.cleanup(LOG, input, output); // Re-throw throw ioe; } // 读取数据后的检测 if (bytesRead != mapOutputLength) { try { mapOutput.discard(); } catch (Exception ioe) { // IGNORED because we are cleaning up LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ioe); } catch (Throwable t) { String msg = getTaskID() + " : Failed in shuffle to disk :" + StringUtils.stringifyException(t); reportFatalError(getTaskID(), t, msg); } mapOutput = null; throw new IOException("Incomplete map output received for " + mapOutputLoc.getTaskAttemptId() + " from " + mapOutputLoc.getOutputLocation() + " (" + bytesRead + " instead of " + mapOutputLength + ")" ); } return mapOutput; }


阅读笔记:

1. MapOutput类 本质上是一个指向一个数据块的指针,该数据块可以在硬盘上,也可以在内存上。(1)final boolean inMemory表示该数据块是否在内存中 (2)final Path file表示数据在硬盘上的路径 (3)byte[] data表示数据在内存中的数据块

2. ReduceTask.run() 是ReduceTask的起始点。其中分为三部分:(1).Copy阶段(由reduceCopier.fetchOutputs()完成) (2).Sort阶段(由Merger.merge()完成) (3).Reduce阶段(由runOldReducer()或者runNewReducer()完成

3. fetchOutputs()函数中启动多个(由mapred.reduce.parallel.copies属性设置,默认为5个)MapOutputCopier线程进行远程数据拷贝到本地。远程拷贝运行过程中,存在 InMemFSMergeThread线程 和 LocalFSMerger线程 进行文件合并。

4. MapOutput类中的 discard()函数即抛弃拷贝的map输出结果。若该MapOutput数据块在内存上,则将数据指针data置null,若数据块在硬盘上,则调用 fs.delete(file,true) 删除该文件。

5. 远程拷贝过程中,每次拷贝一个数据块时,若该数据块可以放入内存则放入内存,否则放入硬盘。有两个标准决定该数据块是否应该放入硬盘:(1) 数据块小于 java_heaps _size * mapred.job.shuffle.input.buffer.percent * MAX_SINGLE_SHUFFLE_SEGMENT_FRACTION(0.25) (2) 内存中有足够空间放入该数据块。


你可能感兴趣的:(Hadoop MapReduce之ReduceTask任务执行(一):远程拷贝map输出)