linux网络协议栈分析笔记10-arp邻居子系统3

还是回到 neigh_resolve_output()
int  neigh_resolve_output(struct sk_buff *skb)
{
     struct dst_entry *dst = skb_dst(skb);
     struct neighbour *neigh;
     int rc = 0;

     if (!dst || !(neigh = dst->neighbour))        异常退出
          goto discard;

     __skb_pull(skb, skb_network_offset(skb));

      if (!neigh_event_send(neigh, skb)) {            判断邻居项是否有可用状态,如果可用,则把数据包发送出去
           int err;
          struct net_device *dev = neigh->dev;
          if (dev->header_ops->cache && !dst->hh) {
               write_lock_bh(&neigh->lock);
               if (!dst->hh)
                    neigh_hh_init(neigh, dst, dst->ops->protocol);
               err = dev_hard_header(skb, dev, ntohs(skb->protocol),
                               neigh->ha, NULL, skb->len);
               write_unlock_bh(&neigh->lock);
          } else {
               read_lock_bh(&neigh->lock);
               err = dev_hard_header(skb, dev, ntohs(skb->protocol),
                               neigh->ha, NULL, skb->len);
               read_unlock_bh(&neigh->lock);
          }
          if (err >= 0)
               rc = neigh->ops->queue_xmit(skb);
          else
               goto out_kfree_skb;
     }
out:
     return rc;
discard:
     NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
                dst, dst ? dst->neighbour : NULL);
out_kfree_skb:
     rc = -EINVAL;
     kfree_skb(skb);
     goto out;
}
我们看邻居项可用的情况下的发送过程:
struct net_device *dev = neigh->dev;
          if ( dev->header_ops->cache && !dst->hh) {        如果hh为空   邻居项的高速缓存
               write_lock_bh(&neigh->lock);
               if (!dst->hh)
                      neigh_hh_init(neigh, dst, dst->ops->protocol);                进行hh的初始化
               err =   dev_hard_header(skb, dev, ntohs(skb->protocol),
                               neigh->ha, NULL, skb->len);               根据HH的信息构造二层头
               write_unlock_bh(&neigh->lock);
          } else {                                                        hh不为空时,直接根据HH的信 息构造二层头
               read_lock_bh(&neigh->lock);
               err = dev_hard_header(skb, dev, ntohs(skb->protocol),
                               neigh->ha, NULL, skb->len);
               read_unlock_bh(&neigh->lock);
          }
          if (err >= 0)                                              加头成功直接输出
               rc = neigh->ops->queue_xmit(skb);          
          else
               goto out_kfree_skb;

static const struct neigh_ops arp_hh_ops = {
     .family =          AF_INET,
     .solicit =          arp_solicit,
     .error_report =          arp_error_report,
     .output =          neigh_resolve_output,
     .connected_output =     neigh_resolve_output,
     .hh_output =          dev_queue_xmit,
     .queue_xmit =          dev_queue_xmit,
};
static void  neigh_hh_init (struct neighbour *n, struct dst_entry *dst,
                 __be16 protocol)
{
     struct hh_cache     *hh;
     struct net_device *dev = dst->dev;

     for (hh = n->hh; hh; hh = hh->hh_next)              从路由的协议下手找
          if (hh->hh_type == protocol)
               break;

     if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {   找不到则申请
          seqlock_init(&hh->hh_lock);
           hh->hh_type = protocol;                     协议类型赋值
          atomic_set(&hh->hh_refcnt, 0);
          hh->hh_next = NULL;

           if (dev->header_ops->cache(n, hh)) {             该函数为eth_header_cache
               kfree(hh);
               hh = NULL;
          } else {
               atomic_inc(&hh->hh_refcnt);
               hh->hh_next = n->hh;
               n->hh         = hh;
                if (n->nud_state & NUD_CONNECTED)
                    hh->hh_output = n->ops->hh_output;
               else
                    hh->hh_output = n->ops->output;         根据邻居项的状态选择输出函数

          }
     }
     if (hh)     {
          atomic_inc(&hh->hh_refcnt);
          dst->hh = hh;                        hh赋值
     }
}
int   eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh)
{
     __be16 type = hh->hh_type;
     struct ethhdr *eth;
     const struct net_device *dev = neigh->dev;

     eth = (struct ethhdr *)
         (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));

     if (type == htons(ETH_P_802_3))
          return -1;

     eth->h_proto = type;
     memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);             填充二层地址源 目的
     memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
     hh->hh_len = ETH_HLEN;                          
     return 0;
}
hh_cache中存储的是链路头的一些相关信息,可以加快数据包的传输(因为有些情况下不用查看路由表,直接到此缓冲区查看).
最后再来一张邻居子系统的主要数据结构组织图 from ULKI
另附:这篇文章对arp状态转移分析得很透彻 http://blog.csdn.net/wearenoth/article/details/7794852  

你可能感兴趣的:(linux网络协议栈分析笔记10-arp邻居子系统3)