- DeepSeek
timer_017
人工智能
DeepSeek(深度求索)是一家以推动人工智能(AI)技术发展为核心使命的中国科技公司,专注于通用人工智能(AGI)的长期探索与实践。公司以技术创新为驱动,致力于通过算法突破、算力优化与场景落地,构建覆盖多领域的AI解决方案,同时注重技术伦理与社会责任,目标是让人工智能真正服务于人类社会的可持续发展。以下从多个维度对DeepSeek进行系统介绍。一、公司定位与核心愿景DeepSeek的终极目标是
- 抽象的算法0.1.3.1版本
严欣铷
算法
前言:公式:(基础+基础+基础+...更多的基础)×维度(影响因素)=问题将问题分解成一个个基础和变量,便可轻松解决问题————不知名的作者题目:爱的具体形状Fort问Peat有多爱他,Peat说我爱你就像nn这个数这么大。但是Fort不信,他要求Peat具体表示出nn这个数字。具体表示的方式为将nn拆分为一个,两个或多个连续正整数之和。Fort认为,nn的具体表示方式越多,Peat就越爱他。请你
- 【揭秘】什么是AI写作?AI写作是助手还是威胁?
ychenhub
AIGCAI写作AIGCAI写作ai写作
什么是AI写作?AI写作是指利用人工智能技术,特别是自然语言处理(NLP)和机器学习(ML)技术,结合深度学习算法,通过大规模语料库和预训练模型来模仿和生成人类语言文本内容的过程。它通过分析大量的语言数据、学习语言的模式、规律和结构,从而能够掌握语法、词汇、句子结构等语言要素,并生成与输入数据相似或符合特定需求的文本内容。AI写作可以应用于多种场景,如新闻报道、广告文案、社交媒体推文、小说创作、诗
- 文心一言与 DeepSeek 的竞争分析:技术先发优势为何未能转化为市场主导地位?
jamison_1
chatgptai人工智能gpt-31024程序员节
目录引言第一部分:技术路径的差异——算法创新与工程优化的博弈1.1文心一言的技术积累与局限性1.1.1早期技术优势1.1.2技术瓶颈与局限性1.2DeepSeek的技术突破1.2.1算法革命与工程创新1.2.2工程成本与效率优势第二部分:生态策略的分野——开源普惠vs闭源垄断2.1文心一言的生态闭环困境2.1.1早期闭源策略2.1.2市场反馈与闭源困境2.2DeepSeek的开源战略优势2.2.1
- 【C语言指南】循环嵌套的复杂度分析与优化
倔强的小石头_
C语言c语言java算法
循环嵌套的复杂度分析算法复杂度的概念算法复杂度是衡量算法性能的重要指标,它主要包括时间复杂度和空间复杂度。时间复杂度反映了算法执行所需的时间与输入规模之间的关系,而空间复杂度则衡量了算法在运行过程中所需的额外存储空间与输入规模的关系。在实际编程中,我们通常希望算法具有较低的时间复杂度和空间复杂度,这样可以提高程序的运行效率和资源利用率。推导大O阶的方法在计算算法的时间复杂度时,我们通常使用大O的渐
- 【蓝桥杯】算法笔记1
是Winky啊
#蓝桥杯算法蓝桥杯职场和发展
1.暴力枚举给定一个正整数n,请找出所有满足a²+b²=n的整数对(a,b),其中a和b都是正整数,且a≤b。输入格式:一个正整数n(1≤n≤10⁶)输出格式:所有符合条件的(a,b)对,每行一对,按a的升序排列。如果没有符合条件的对,输出"Nosolution"。问题分析:我们需要找到所有满足a²+b²=n的正整数对(a,b),其中a≤b。枚举策略:由于a和b都是正整数且a≤b,a的最大可能值是
- Crypto Architecture Kit简介
RZer
HarmonyOSHarmonyOS
HarmonyOS5.0.3(15)版本的配套文档,该版本API能力级别为API15Release文章目录约束与限制能力范围基本概念与相关Kit的关系CryptoArchitectureKit屏蔽了第三方密码学算法库实现差异的算法框架,提供加解密、签名验签、消息验证码、哈希、安全随机数、密钥派生等相关功能。开发者可以通过调用加解密算法框架服务,忽略底层不同三方算法库的差异,实现迅捷开发。约束与限制
- 故障识别 | 基于改进螂优化算法(MSADBO)优化变分模态提取(VME)结合稀疏最大谐波噪声比解卷积(SMHD)进行故障诊断识别,matlab代码
机器学习之心
分类预测算法matlab开发语言
基于改进螂优化算法(MSADBO)优化变分模态提取(VME)结合稀疏最大谐波噪声比解卷积(SMHD)进行故障诊断识别一、引言1.1机械故障诊断的背景和意义在工业生产的宏大画卷中,机械设备的稳定运行是推动生产顺利进行、保障企业效益的关键要素。然而,机械故障如同潜伏的阴影,时刻威胁着工业生产的正常秩序。从工业生产的角度来看,机械故障会带来生产效率的骤降和生产成本的激增。一旦关键设备出现故障,整条生产线
- ELSE、基础算法
安庆平.Я
算法数据结构c语言
1素数 voidsushu(intmin,intmax){ inti,j,count=0,flag=1; for(i=min;i<=max;i++){ flag=1; if(i<=2) flag=0; for(j=2;j<sqrt(i);j++){ if(i%j==0){ flag=0; } } if(flag==1){ count++; } } }
- 人工智能就业趋势分析:机遇、挑战与未来展望
竹木有心
人工智能发展人工智能
一、人工智能就业市场现状:供需两旺的“黄金赛道”2025年春招市场数据显示,人工智能行业已成为就业市场最活跃的领域之一。招聘平台数据显示,AI相关岗位求职人数同比增长33.4%,机器人算法工程师、调试工程师等岗位招聘增速超30%^1^2。杭州、深圳等城市凭借产业集群优势,成为AI人才聚集高地。例如,杭州某大型线下招聘会上,830家企业推出的2.1万个岗位中,半数聚焦AI算法与大模型开发,硬件类岗位
- 16、Python继承与多态机制深度解析
wolf犭良
pythonpython开发语言
Python继承与多态机制深度解析文章导言本文深入探讨Python面向对象编程中继承与多态的核心机制,涵盖从基础语法到高级用法的完整知识体系。通过理论解析、代码实战和典型场景案例,助您掌握继承体系的构建方法、MRO算法的底层逻辑、多态特性的工程实践,以及抽象基类在接口设计中的妙用。文末提供10个阶梯式练习题及完整答案代码。一、继承机制深度剖析1.1单继承体系classAnimal:def__ini
- 如何高效准备后端校招
埼玉同学
java后端求职招聘算法数据结构
如何高效准备后端校招简介算法CS基础课1.数据结构2.计算机组成原理3.操作系统4.计算机网络5.数据库6.设计模式7.Linux后端技术栈1.Java(其它语言直接跳过)2.MySQL3.Redis4.消息队列5.Spring6.其余后端技术栈8.分布式架构项目简历投递准备时间结语简介这是一篇主要介绍后端方向如何准备秋招,准备过程中应该获取哪些资源,以及相关的优质资源从何获取的文章。笔者经历了2
- 搜广推校招面经五十八
Y1nhl
搜广推面经机器学习算法人工智能推荐算法搜索算法深度学习求职招聘
小红书推荐算法一、BN(BatchNormalization)在训练和测试的区别BatchNormalization(批归一化,BN)是一种加速深度神经网络训练的技术,它通过对每个mini-batch计算均值和方差来归一化输入特征,从而稳定训练过程,减少梯度消失/梯度爆炸问题。1.1.训练阶段在训练过程中,BN采用mini-batch统计信息进行归一化:计算方式:计算当前mini-batch的均值
- 【大模型篇】阿里云 Qwen2.5-Max:超大规模 MoE 模型架构和性能评估
大F的智能小课
大模型理论和实战阿里云云计算
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!一、引言Qwen2.5-Max是阿里云通义千问团队研发的超大规模Mixture-of-Expert(MoE)模型,旨在通过超大规模的数据和模型规模扩展来提升模型的智能水平。它在多个权威基准测试中展现出卓越性能,为自然语言处理领
- C++编程语言:抽象机制:泛型编程(Bjarne Stroustrup)
ComputerInBook
c++c++泛型编程泛型C++模板概念约束检查
泛型编程(GenericProgramming)目录24.1引言(Introduction)24.2算法和(通用性的)提升(AlgorithmsandLifting)24.3概念(此指模板参数的插件)(Concepts)24.3.1发现插件集(DiscoveringaConcept)24.3.2概念与约束(ConceptsandConstraints)24.4具体化概念(MakingConcept
- 人工智能入门(1)
反方向的钟儿
人工智能人工智能nlp大数据云计算计算机视觉深度学习机器学习
人工智能导引文章目录人工智能导引artifiicialintelligence由图灵测试出发的六个领域贝叶斯方法分析成为大多数AI系统中不确定推理的现代方法基础研究方法机器学习计算机利用已经有的数据样本,得出某种规律模型,并利用模型预测未来的一种方法==回归算法==线性回归和逻辑回归神经网络ANN人工神经网络模型支持向量机SVM聚类计算机视觉自然语言处理NLP==群体智能==目前主要的两种方法是=
- leetcode153.寻找旋转排序数组中的最小值
ゞ 正在缓冲99%…
算法leetcode数据结构
思路源于【小白都能听懂的算法课】【力扣】【Leetcode153】寻找旋转排序数组中的最小值|二分查找|数组classSolution{publicintfindMin(int[]nums){intleft=0,right=nums.length-1;while(left<=right){intmid=(right-left)/2+left;//left和right处于单调区间中那么left处就是
- 《时间复杂度分析:计算机科学领域的必备技能》
mingzhuo5432
java算法javascript
引言在计算机科学领域,随着数据规模的不断膨胀以及算法应用场景的日益复杂,算法效率成为了决定系统性能的关键因素。时间复杂度作为衡量算法效率的核心指标,其重要性不言而喻。它不仅能够帮助开发者在设计和选择算法时做出明智决策,还能为优化现有算法提供方向。例如,在大数据处理场景中,高效的排序算法能够显著提升数据处理速度,降低计算资源的消耗;在搜索引擎的索引构建过程中,合理的算法时间复杂度可以确保快速响应用户
- 《JavaScript 性能优化:数据结构与算法的巧妙运用》
deying0865423
javascript性能优化开发语言
引言在当今的数字化时代,网页应用的性能对于用户体验起着决定性的作用。而JavaScript作为网页交互的核心语言,其代码的执行效率直接影响着整个页面的响应速度和流畅度。优化JavaScript性能不仅能够提升用户满意度,还能在竞争激烈的互联网市场中为产品赢得优势。本文将全面深入地探讨JavaScript性能优化的各种策略和技巧。减少DOM操作DOM操作的代价DOM(文档对象模型)操作是JavaSc
- 优化算法深度剖析:梯度下降、动量方法与自适应学习率
KangkangLoveNLP
#正则化基础知识算法学习人工智能深度学习transformer机器学习pytorch
深度学习中常见的优化算法1.基础优化算法1.1梯度下降(GradientDescent)通过计算损失函数对参数的梯度,沿着梯度下降的方向更新模型参数,直到找到最小值或足够接近最小值的解。其核心思想是基于损失函数的梯度方向来调整参数,以最小化损失。1.1.2基本原理梯度下降的核心思想是基于损失函数的梯度方向来调整参数。具体来说,它通过计算损失函数对参数的梯度,沿着梯度下降的方向更新模型参数,直到找到
- 动态规划——编辑距离
皮蛋瘦肉没有肉
经典算法动态规划算法
参考博客:https://blog.csdn.net/ghsau/article/details/78903076题目编辑距离又称Leveinshtein距离,是由俄罗斯科学家VladimirLevenshtein在1965年提出。编辑距离是计算两个文本相似度的算法之一,以字符串为例,字符串a和字符串b的编辑距离是将a转换成b的最小操作次数,这里的操作包括三种:插入一个字符删除一个字符替换一个字符
- 各种内部排序算法的比较
洞阳
数据结构与算法排序算法算法数据结构
目录一、内部排序算法的比较二、内部排序算法的应用一、内部排序算法的比较选择排序、冒泡排序、堆排序在每趟处理后都能产生当前序列的最大或者最小值。快速排序、选择排序、冒泡排序、堆排序每一趟都能确定一个元素的最终位置。各种排序算法的性质算法分类算法名称时间复杂度空间复杂度是否稳定适用性最好情况平均情况最坏情况插入排序直接插入排序原本有序O(n)O(n^2)原本逆序O(n^2)O(1)是顺序表、链表折半插
- 机器学习knnlearn3
XW-ABAP
机器学习人工智能
mportnumpyasnpimportoperator"""Parameters:inX-用于分类的数据(测试集)dataSet-用于训练的数据(训练集)labes-分类标签k-kNN算法参数,选择距离最小的k个点Returns:sortedClassCount[0][0]-分类结果"""#函数说明:kNN算法,分类器defclassify0(inX,dataSet,labels,k):#num
- AI大模型训练方法论:10种必须掌握的核心技术
AI产品经理
人工智能机器学习深度学习语言模型microsoft
AI大模型学习在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。前排提示,文末有大模型AGI-CSDN独家资料包哦!系统化理论知识建构:对于AI大模型的学习,首要任务是对基础理论进行全面而深入的理解。这意味着需要投入大量的时间去研
- 如何使用深度学习目标检测算法Yolov5训练反光衣数据集模型识别检测反光衣及其他衣服
目标检测数据集合
行为类别睡觉姿态课堂等深度学习目标检测算法
目标检测算法Yolov5训练反光衣数据集模型建立基于深度学习yolov5反光衣的检测文章目录**标题:基于YOLOv5的反光衣检测全流程参考****1.安装依赖****2.准备数据集**数据集结构示例创建`data.yaml`文件**3.配置并训练YOLOv5模型**训练模型模型评估**4.推理代码****5.构建GUI应用程序**反光衣数据集格式txt:两个类别反光衣和其他衣服标注:txt格式)
- 安当KSP密钥管理系统:量子安全时代的CA证书体系重构
安 当 加 密
安全重构量子计算
在量子计算与AI大模型技术高速发展的今天,传统数字证书体系正面临**“算法脆弱性加剧”与“身份管理粗放化”的双重威胁。据NIST预测,2025年后量子计算机可在4小时内破解RSA-2048算法,而全球83%的CA系统仍依赖传统加密技术。上海安当推出的KSP(KeySafePlatform)密钥管理系统**,以**“抗量子算法矩阵、量子密钥全生命周期管理、零改造国密合规”**为核心,为企业构建覆盖用
- AI代码审计工具推荐︱AI+SAST 破解传统代码审计难题,AI助力开发效率提升
DevSecOps选型指南
人工智能软件供应链安全厂商代码审计代码安全审计AI代码安全审计
通用大模型AI凭借其高效的算法和强大的推理能力,已在多个领域展现出了卓越的上下文理解和代码生成能力。随着DeepSeek等新一代大模型技术的横空出世,其卓越的表现为软件供应链安全行业带来了前所未有的关注和机遇。近日,悬镜安全灵脉SAST(静态代码扫描工具)结合AI大模型,全新升级为:灵脉AI开发安全卫士https://sast.xmirror.cn/。通过接入DeepSeek、通义千问等通用大模型
- Unity开发中KMP算法的理解和应用
unityのkiven
算法unity
1.KMP算法简介KMP(Knuth-Morris-Pratt)算法是一种用于字符串匹配的高效算法,相比于暴力匹配,它能在O(n+m)时间复杂度下完成匹配,其中n是文本串长度,m是模式串长度。其核心思想是部分匹配表(next数组),用于在匹配失败时减少回溯,从而提升匹配效率。2.KMP算法的核心原理KMP算法主要包含两个部分:构建部分匹配表(next数组):计算模式串自身的重复前后缀信息,减少匹配
- 【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读
大F的智能小课
大模型理论和实战DeepSeek技术解析和实战人工智能机器学习架构
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!目录引言:大模型的革命性浪潮核心技术节点:从Transformer到生成式AI2.1Transformer架构的范式革命2.2生成式AI的底层逻辑2.3神经网络层级设计架构演进:OpenAI的技术突破3.1GPT系列的四个发展
- Java面试黄金宝典22
ylfhpy
Java面试黄金宝典java面试算法开发语言职场和发展
1.树的中序遍历,除了递归和栈还有什么实现方式定义Morris遍历是一种用于二叉树遍历的算法,它利用树中大量空闲的空指针,在不使用额外栈空间和递归的情况下,完成树的遍历。通过建立临时的线索连接,使得可以按照中序遍历的顺序访问节点,访问完后再将这些线索连接恢复。要点线索连接构建:寻找当前节点左子树的最右节点,将其右指针指向当前节点,以便在遍历完左子树后能回到当前节点。节点访问时机:若当前节点的左子树
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key