Leetcode 53:Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

Subscribe to see which companies asked this question

一、题目描述

给定一个整数数组,求其中的非空子数组(连续的一段数),使得它的和最大。

例如:数组nums=[-2,1,-3,4,-1,2,1,-5,4],其中子数组[4,-1,2,1]的元素相加和最大,最大子数组和为6。


二、解题方法

//分治法,求解最大子数组和
class Solution {
public:
	int maxSubArray(vector<int>& nums) {
		if (nums.size() == 0) return 0;

		return maxSubArraySum(0, nums.size() - 1, nums);

	}

	int maxSubArraySum(int left, int right, const vector<int>& nums)
	{
		if (left == right) return  nums[left];
		int mid = (left + right) / 2;
		int leftMax, rightMax;
		int leftBounder = 0, rightBounder = 0, ans = 0;
		int leftBounderMax = 0, rightBounderMax = 0;

		//分:两个基本等长的前后半段子数组,分别求二者的最大子数组和
		leftMax = maxSubArraySum(left, mid, nums);
		rightMax = maxSubArraySum(mid + 1, right, nums);
		ans = max(leftMax, rightMax);

		//合:跨越中心点mid的最大子数组和
		leftBounderMax = nums[mid];
		for (int i = mid; i >= left; i--)
		{
			leftBounderMax = max(leftBounderMax, leftBounder += nums[i]);
		}

		rightBounderMax = nums[mid + 1];
		for (int i = mid + 1; i <= right; i++)
		{
			rightBounderMax = max(rightBounderMax, rightBounder += nums[i]);
		}

		return max(ans, leftBounderMax + rightBounderMax);
	}
};


你可能感兴趣的:(Leetcode 53:Maximum Subarray)