图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯
度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;
而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应
的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限
的模拟信号,则其傅立叶变换就表示f的频谱。从纯粹的数学意义上看,傅立叶变换
是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图
像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,
傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅
立叶逆变换是将图像的频率分布函数变换为灰度分布函数
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的
采样得到一系列点的集合,通常用一个二维矩阵表示空间上各点,记为 z=f(x,y)
。又因空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系
就必须由梯度来表示,这样我们才能通过观察图像得知物体在三维空间中的对
应关系。
为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图
像梯度的分布图。当然,频谱图上的各点与图像上各点并不存在一一对应的关系,
这一点与是否采取移频处理没有关系。
傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域
点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的
低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否
则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们就可以直
观地看出图像的能量分布:如果频谱图中暗的点数更多,那么实际图像是比较柔
和的(因为各点与邻域差异都不大,梯度相对较小);反之,如果频谱图中亮的
点数多,那么实际图像一定是尖锐的、边界分明且边界两边像素差异较大的。
对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布
的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它
可以分离出有周期性规律的干扰信号,比如正弦干扰。一幅频谱图如果带有正弦干
扰,移频到原点上就可以看出,除了中心以外还存在以另一点为中心、对称分布的亮
点集合,这个集合就是干扰噪音产生的。这时可以很直观的通过在该位置放置带阻
滤波器消除干扰
另外我还想说明以下几点:
1、图像经过二维傅立叶变换后,其变换系数矩阵具有如下性质:若变换矩阵Fn原
点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所
用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩
阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量
集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮;平移之后中间部分是低频
,最亮,亮度大说明低频的能量大(幅角比较大)
一个例子:
img = imread( 'fuliye.jpg' );%读入图像
subplot(2,2,1),imshow(img);%显示
f=rgb2gray(img);%转为灰度图
subplot(2,2,2),imshow(f)%显示
F=fft2(f);%快速傅里叶变换
FS=fftshift(F);%转移到中心
S= log (1+ abs (FS));
subplot(2,2,3);imshow(S,[])%显示
|
效果: