项目6 -- 多项式求和

/*   

* Copyright (c) 2015, 烟台大学计算机与控制工程学院   

* All rights reserved.   

* 文件名称:main.cpp,

* 作者:张志康  

* 完成日期:2015年9月25日   

* 版本号:vc++6.0   

*   

* 问题描述:用单链表存储一元多项式,并实现两个多项式的加法。

* 输入描述:无   

* 程序输出:结果   

*/

代码

#include <stdio.h>
#include <malloc.h>
#define MAX 20          //多项式最多项数
typedef struct      //定义存放多项式的数组类型
{
    double coef;        //系数
    int exp;            //指数
} PolyArray;

typedef struct pnode    //定义单链表结点类型,保存多项式中的一项,链表构成多项式
{
    double coef;        //系数
    int exp;            //指数
    struct pnode *next;
} PolyNode;

void DispPoly(PolyNode *L)  //输出多项式
{
    bool first=true;        //first为true表示是第一项
    PolyNode *p=L->next;
    while (p!=NULL)
    {
        if (first)
            first=false;
        else if (p->coef>0)
            printf("+");
        if (p->exp==0)
            printf("%g",p->coef);
        else if (p->exp==1)
            printf("%gx",p->coef);
        else
            printf("%gx^%d",p->coef,p->exp);
        p=p->next;
    }
    printf("\n");
}

void DestroyList(PolyNode *&L)  //销毁单链表
{
    PolyNode *p=L,*q=p->next;
    while (q!=NULL)
    {
        free(p);
        p=q;
        q=p->next;
    }
    free(p);
}

void CreateListR(PolyNode *&L, PolyArray a[], int n) //尾插法建表
{
    PolyNode *s,*r;
    int i;
    L=(PolyNode *)malloc(sizeof(PolyNode)); //创建头结点
    L->next=NULL;
    r=L;                        //r始终指向终端结点,开始时指向头结点
    for (i=0; i<n; i++)
    {
        s=(PolyNode *)malloc(sizeof(PolyNode));//创建新结点
        s->coef=a[i].coef;
        s->exp=a[i].exp;
        r->next=s;              //将*s插入*r之后
        r=s;
    }
    r->next=NULL;               //终端结点next域置为NULL
}

void Sort(PolyNode *&head)      //按exp域递减排序
{
    PolyNode *p=head->next,*q,*r;
    if (p!=NULL)                //若原单链表中有一个或以上的数据结点
    {
        r=p->next;              //r保存*p结点后继结点的指针
        p->next=NULL;           //构造只含一个数据结点的有序表
        p=r;
        while (p!=NULL)
        {
            r=p->next;          //r保存*p结点后继结点的指针
            q=head;
            while (q->next!=NULL && q->next->exp>p->exp)
                q=q->next;      //在有序表中找插入*p的前驱结点*q
            p->next=q->next;    //将*p插入到*q之后
            q->next=p;
            p=r;
        }
    }
}

void Add(PolyNode *ha,PolyNode *hb,PolyNode *&hc)  //求两有序集合的并,完成加法
{
    PolyNode *pa=ha->next,*pb=hb->next,*s,*tc;
    double c;
    hc=(PolyNode *)malloc(sizeof(PolyNode));        //创建头结点
    tc=hc;
    while (pa!=NULL && pb!=NULL)
    {
        if (pa->exp>pb->exp)
        {
            s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
            s->exp=pa->exp;
            s->coef=pa->coef;
            tc->next=s;
            tc=s;
            pa=pa->next;
        }
        else if (pa->exp<pb->exp)
        {
            s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
            s->exp=pb->exp;
            s->coef=pb->coef;
            tc->next=s;
            tc=s;
            pb=pb->next;
        }
        else                //pa->exp=pb->exp
        {
            c=pa->coef+pb->coef;
            if (c!=0)       //系数之和不为0时创建新结点
            {
                s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
                s->exp=pa->exp;
                s->coef=c;
                tc->next=s;
                tc=s;
            }
            pa=pa->next;
            pb=pb->next;
        }
    }
    if (pb!=NULL) pa=pb;    //复制余下的结点
    while (pa!=NULL)
    {
        s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
        s->exp=pa->exp;
        s->coef=pa->coef;
        tc->next=s;
        tc=s;
        pa=pa->next;
    }
    tc->next=NULL;
}

int main()
{
    PolyNode *ha,*hb,*hc;
    PolyArray a[]= {{1.2,0},{2.5,1},{3.2,3},{-2.5,5}};
    PolyArray b[]= {{-1.2,0},{2.5,1},{3.2,3},{2.5,5},{5.4,10}};
    CreateListR(ha,a,4);
    CreateListR(hb,b,5);
    printf("原多项式A:   ");
    DispPoly(ha);
    printf("原多项式B:   ");
    DispPoly(hb);
    Sort(ha);
    Sort(hb);
    printf("有序多项式A: ");
    DispPoly(ha);
    printf("有序多项式B: ");
    DispPoly(hb);
    Add(ha,hb,hc);
    printf("多项式相加:  ");
    DispPoly(hc);
    DestroyList(ha);
    DestroyList(hb);
    DestroyList(hc);
    return 0;
}


运行结果:

项目6 -- 多项式求和_第1张图片

提示:
1、存储多项式的数据结构
  多项式的通式是 pn(x)=anxn+an1xn1+...+a1x+a0 。n次多项式共有n+1项。直观地,可以定义一个数组来存储这n+1个系数。以多项式 p(x)=3.4x109.6x8+7.2x2+x 为例,存储这个多项式的数组如下图:
这里写图片描述
  可以看出,这种方案适合对某些多项式的处理。但是,在处理一些次数高但项数少的多项式时,存在浪费空间的现象,会有很多闲置的0。
  可以使用如下定义的单链表结构存储多项式:链表中的每一个结点是多项式中的一项,结点的数据域包括指数和系数两部分,由指针域连接起多项式中的各项。

typedef struct pnode //定义单链表结点类型,保存多项式中的一项,链表构成多项式 {
double coef; //系数,浮点数
int exp; //指数,正整数*
struct pnode *next; //指向下一项的指针
} PolyNode;

  用于表示多项式的链表将如下图所示,在建立多项式的链表时,已经令结点按指数由大到小的顺序排列。
这里写图片描述

学习总结:

       

       

你可能感兴趣的:(数据结构,算法,链表,单链表,线性表)