opencv里基于特征跟踪类FeatureTracker分析


      近来,因为在项目中遇到跟踪的难题,没事翻看opencv2.4.5里的相关源码查阅,偶然发现在opencv的contrib文件夹下实现了多种目标跟踪算法,包括featuretracker、hybridtracker和detection_based_tracker等。由于是改代码是放置于contrib文件夹下,所以不能直接调用(除非自己重新编译)。对源代码进行了提取,单还是有错,欢迎同道之人下载下来一起找错,相互交流。

     首先附上main函数里的相关代码:

Rect box(0,0,0,0);
bool drawing_box = false;
bool gotBB = false;
string video ="E:\\Video\\test1.avi";

//bounding box mouse callback
void mouseHandler(int event, int x, int y, int flags, void *param)
{
	switch( event )
	{
  case CV_EVENT_MOUSEMOVE:
	  if (drawing_box)
	  {
		  box.width = x-box.x;
		  box.height = y-box.y;
	  }
	  break;
  case CV_EVENT_LBUTTONDOWN:
	  drawing_box = true;
	  box = Rect( x, y, 0, 0 );
	  break;
  case CV_EVENT_LBUTTONUP:
	  drawing_box = false;
	  if( box.width < 0 )
	  {
		  box.x += box.width;
		  box.width *= -1;
	  }
	  if( box.height < 0 )
	  {
		  box.y += box.height;
		  box.height *= -1;
	  }
	  gotBB = true;
	  break;
	}
}

void drawBox(Mat& image, CvRect box, Scalar color, int thick)
{
	rectangle( image, cvPoint(box.x, box.y), cvPoint(box.x+box.width,box.y+box.height),color, thick);
} 

int main(int argc, char * argv[])
{	
	VideoCapture capture;
	Mat frame;

	CvFeatureTrackerParams params;
	params.feature_type = 0;
	params.window_size = 0;
	FeatureTraker tracker(params);

	//FeatureTraker tracker;	
	
	capture.open(video);	
	if (!capture.isOpened())
	{
		cout << " video file open failed..." << endl;
		return 1;
	}
	capture >> frame;	
	if ( frame.empty())
	{
		cout << " get frame error..." << endl;
		return 1;
	}
	resize( frame, frame, Size(352,288));	
	//Register mouse callback to draw the bounding box
	namedWindow("fetureTracker",CV_WINDOW_AUTOSIZE);
	setMouseCallback( "fetureTracker", mouseHandler, NULL );
	
GETBOUNDINGBOX:
	while(!gotBB)
	{				
		drawBox(frame,box,Scalar(0,255,0),2);
		imshow("fetureTracker", frame);
		if ( waitKey(33) == 'q')
			return 0;	
	}
	if (box.area()<160)
	{
		cout << "Bounding box too small, try again." << endl;
		gotBB = false;
		goto GETBOUNDINGBOX;
	}	
	//Remove callback
	setMouseCallback( "fetureTracker", NULL, NULL );
	printf("Initial Bounding Box = x:%d y:%d h:%d w:%d\n",box.x,box.y,box.width,box.height);
	
	tracker.newTrackingWindow(frame,box);
	Point2f pt = tracker.getTrackingCenter();
	circle(frame,pt,5,Scalar(0,0,255),2);

	for (;;)
	{
		capture>>frame;
		resize( frame, frame, Size(352,288));		
		tracker.updateTrackingWindow(frame);
		pt = tracker.getTrackingCenter();
		circle(frame,pt,5,Scalar(0,0,255),2);
		drawBox(frame,box,Scalar(0,255,0),2);
		imshow("fetureTracker", frame);
		if ( waitKey(33) == 'q')
			break;
	}	

	return 0;
}


      接着,对opencv中FeatureTracker类中的几个问题进行简单列举下:

1) 因为SIFT和SURF是nonfree模块下的类,所以在调用该模块下的函数之前需要调用: initModule_nonfree();函数。

2) 在FeatureTracker的带有CvFeatureTrackerParams类型参数的构造函数中,switch case缺少break;语句。

修改后的头文件FeatureTraker.hpp如下:

// Feature tracking parameters
struct CV_EXPORTS CvFeatureTrackerParams
{
	enum {  SIFT = 0, SURF = 1, OPTICAL_FLOW = 2 };
	CvFeatureTrackerParams(int featureType = 0, int windowSize = 0)
	{
		feature_type = featureType;
		window_size = windowSize;
	}

	int feature_type; // Feature type to use
	int window_size; // Window size in pixels around which to search for new window
};


class FeatureTraker
{
private:
	Ptr<Feature2D> dd;
	Ptr<DescriptorMatcher> matcher;
	vector<DMatch> matches;

	Mat prev_image;
	Mat prev_image_bw;
	Rect prev_trackwindow;
	Point2d prev_center;

	int ittr;
	vector<Point2f> features[2];

public:
	Mat disp_matches;
	CvFeatureTrackerParams params;

	FeatureTraker();
	explicit FeatureTraker(CvFeatureTrackerParams params);
	~FeatureTraker();
	void newTrackingWindow(Mat image, Rect selection);
	Rect updateTrackingWindow(Mat image);
	Rect updateTrackingWindowWithSIFT(Mat image);
	Rect updateTrackingWindowWithFlow(Mat image);
	void setTrackingWindow(Rect _window);
	Rect getTrackingWindow();
	Point2f getTrackingCenter();
};

 

修改后的头文件FeatureTraker.cpp如下:

FeatureTraker::FeatureTraker(CvFeatureTrackerParams _params) :
params(_params)
{
	initModule_nonfree();
	switch (params.feature_type)
	{
	case CvFeatureTrackerParams::SIFT:
		dd = Algorithm::create<Feature2D>("Feature2D.SIFT");
		if( dd.empty() )
			CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SIFT support");
		dd->set("nOctaveLayers", 5);
		dd->set("contrastThreshold", 0.04);
		dd->set("edgeThreshold", 10.7);
		break;
	case CvFeatureTrackerParams::SURF:
		dd = Algorithm::create<Feature2D>("Feature2D.SURF");
		if( dd.empty() )
			CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SURF support");
		dd->set("hessianThreshold", 400);
		dd->set("nOctaves", 3);
		dd->set("nOctaveLayers", 4);
		break;
	default:
		CV_Error(CV_StsBadArg, "Unknown feature type");
		break;
	}

	matcher = new BFMatcher(NORM_L2);
}

FeatureTraker::FeatureTraker()
{
}

FeatureTraker::~FeatureTraker()
{
}

void FeatureTraker::newTrackingWindow(Mat image, Rect selection)
{
	image.copyTo(prev_image);
	cvtColor(prev_image, prev_image_bw, CV_BGR2GRAY);
	prev_trackwindow = selection;
	prev_center.x = selection.x;
	prev_center.y = selection.y;
	ittr = 0;
}

Rect FeatureTraker::updateTrackingWindow(Mat image)
{
	if(params.feature_type == CvFeatureTrackerParams::OPTICAL_FLOW)
		return updateTrackingWindowWithFlow(image);
	else
		return updateTrackingWindowWithSIFT(image);
}

Rect FeatureTraker::updateTrackingWindowWithSIFT(Mat image)
{
	ittr++;
	vector<KeyPoint> prev_keypoints, curr_keypoints;
	vector<Point2f> prev_keys, curr_keys;
	Mat prev_desc, curr_desc;

	Rect window = prev_trackwindow;
	Mat mask = Mat::zeros(image.size(), CV_8UC1);
	rectangle(mask, Point(window.x, window.y), Point(window.x + window.width,
		window.y + window.height), Scalar(255), CV_FILLED);

	dd->operator()(prev_image, mask, prev_keypoints, prev_desc);

	window.x -= params.window_size;
	window.y -= params.window_size;
	window.width += params.window_size;
	window.height += params.window_size;
	rectangle(mask, Point(window.x, window.y), Point(window.x + window.width,
		window.y + window.height), Scalar(255), CV_FILLED);

	dd->operator()(image, mask, curr_keypoints, curr_desc);

	if (prev_keypoints.size() > 4 && curr_keypoints.size() > 4)
	{
		//descriptor->compute(prev_image, prev_keypoints, prev_desc);
		//descriptor->compute(image, curr_keypoints, curr_desc);

		matcher->match(prev_desc, curr_desc, matches);

		for (int i = 0; i < (int)matches.size(); i++)
		{
			prev_keys.push_back(prev_keypoints[matches[i].queryIdx].pt);
			curr_keys.push_back(curr_keypoints[matches[i].trainIdx].pt);
		}

		Mat T = findHomography(prev_keys, curr_keys, CV_LMEDS);

		prev_trackwindow.x += cvRound(T.at<double> (0, 2));
		prev_trackwindow.y += cvRound(T.at<double> (1, 2));
	}

	prev_center.x = prev_trackwindow.x;
	prev_center.y = prev_trackwindow.y;
	prev_image = image;
	return prev_trackwindow;
}

Rect FeatureTraker::updateTrackingWindowWithFlow(Mat image)
{
	ittr++;
	Size subPixWinSize(10,10), winSize(31,31);
	Mat image_bw;
	TermCriteria termcrit(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03);
	vector<uchar> status;
	vector<float> err;

	cvtColor(image, image_bw, CV_BGR2GRAY);
	cvtColor(prev_image, prev_image_bw, CV_BGR2GRAY);

	if (ittr == 1)
	{
		Mat mask = Mat::zeros(image.size(), CV_8UC1);
		rectangle(mask, Point(prev_trackwindow.x, prev_trackwindow.y), Point(
			prev_trackwindow.x + prev_trackwindow.width, prev_trackwindow.y
			+ prev_trackwindow.height), Scalar(255), CV_FILLED);
		goodFeaturesToTrack(image_bw, features[1], 500, 0.01, 20, mask, 3, 0, 0.04);
		cornerSubPix(image_bw, features[1], subPixWinSize, Size(-1, -1), termcrit);
	}
	else
	{
		calcOpticalFlowPyrLK(prev_image_bw, image_bw, features[0], features[1],
			status, err, winSize, 3, termcrit);

		Point2f feature0_center(0, 0);
		Point2f feature1_center(0, 0);
		int goodtracks = 0;
		for (int i = 0; i < (int)features[1].size(); i++)
		{
			if (status[i] == 1)
			{
				feature0_center.x += features[0][i].x;
				feature0_center.y += features[0][i].y;
				feature1_center.x += features[1][i].x;
				feature1_center.y += features[1][i].y;
				goodtracks++;
			}
		}

		feature0_center.x /= goodtracks;
		feature0_center.y /= goodtracks;
		feature1_center.x /= goodtracks;
		feature1_center.y /= goodtracks;

		prev_center.x += (feature1_center.x - feature0_center.x);
		prev_center.y += (feature1_center.y - feature0_center.y);

		prev_trackwindow.x = (int)prev_center.x;
		prev_trackwindow.y = (int)prev_center.y;
	}

	swap(features[0], features[1]);
	image.copyTo(prev_image);
	return prev_trackwindow;
}

void FeatureTraker::setTrackingWindow(Rect _window)
{
	prev_trackwindow = _window;
}

Rect FeatureTraker::getTrackingWindow()
{
	return prev_trackwindow;
}

Point2f FeatureTraker::getTrackingCenter()
{
	Point2f center(0, 0);
	center.x = (float)(prev_center.x + prev_trackwindow.width/2.0);
	center.y = (float)(prev_center.y + prev_trackwindow.height/2.0);
	return center;
}

 

源代码下载:http://download.csdn.net/detail/kezunhai/5660195

   

你可能感兴趣的:(opencv,目标跟踪,特征跟踪)