SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)

四、S3C2410 SDRAM控制器的配置方法

在系统使用SDRAM之前,需要对S3C2410X的存储器控制器进行初始化。其中对与SDRAM(Bank6)相关的寄存器进行了特殊的设置,以使SDRAM能够正常工作。由于C语言程序使用的数据空间和堆栈空间都定位在SDRAM上,因此,如果没有对SDRAM(Bank6)的正确初始化,系统就无法正确启动。下面介绍与SDRAM相关的寄存器设置。

 

1、BWSCON寄存器

 

BWSCON寄存器主要用来设置外接存储器的总线宽度和等待状态。在BWSCON中,除了Bank0,其他7个bank都各对应4个相关位的设置,分别为STn,WSn和DWn。这里只需要对DWn进行设置,例如SDRAM(Bank6)采用32位总线宽度,因此,DW6=10,其他2位采用缺省值。BWSCON寄存器在Bank6上的位定义如表4-1所示。

 

表4-1 BWSCON寄存器在Bank6上的位定义

 

2、BANKCONn寄存器的设置

 

S3C2410X有8个BANKCONn寄存器,分别对应着Bank0~Bank7。由于Bank6~Bank7可以作为FP/EDO/SDRAM等类型存储器的映射空间,因此与其他bank的相应寄存器有所不同,其中MT位定义了存储器的类型。BANKCONn寄存器在Bank6和Bank7上的位定义如表4-2所示。

 

表4-2 BANKCONn寄存器在Bank6和Bank7上的位定义

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第1张图片

MT的取值又定义该寄存器余下几位的作用。当MT=11(即SDRAM型存储器)时,BANKCONn寄存器余下的几位定义如表4-3所示。

 

表4-3 BANKCONn寄存器在MT=11时的相关位定义

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第2张图片

 

Trcd是从行使能到列使能的延迟,根据S3C2410X的HCLK频率(100M)及HY57V561620T-H的特性(见下图),此项取01,即3CLKS。SCAN为列地址线数量,此项根据HY57V561620特性取01,即9位(A0~A8)。

 

3、REFRESH寄存器

 

REFRESH寄存器是DRAM/SDRAM的刷新控制器。位定义如表4-4所示。

 

表4-4 REFRESH寄存器位定义

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第3张图片

 

 

4.BANKSIZE寄存器

表4-5 BANKSIZE寄存器定义

初始化时,BURST_EN可以取0或1,为了提高效率,最好设置为1。SCKE_EN设置为1。SCLK_EN设置为1。BK76MAP设置为2。

 

 

5、MRSR寄存器

MRSR寄存器有2个,分别对应MRSRB6和MRSRB7,对应着Bank6和Bank7。见表4-6。

 

表4-6 MRSRn寄存器定义

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第4张图片

此寄存器S3C2410只允许CL可以设置,参照HY57V561620T-H手册,取011,即3CLKs。

 

猝发长度的具体值在程序中没有给出,根据后面触发时序猜测应该是8,HY57V561620T支持1、2、4、8、page猝发长度。

 

参照前面的HY57V561620命令表,写Mode寄存器用的是Mode register命令。其中的OP CODE参照下图:

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第5张图片

注意:当代码在SDRAM中运行时,绝不能够重新配置MRSR寄存器。

 

 

五、SDRAM的控制时序分析

 

下面列出SDRAM的状态机及几种SDARM控制命令的时序。大家掌握了以后可以试着分析其它的命令时序。

 

1、SDRAM的状态机

 

SDRAM的完整状态机由多个状态构成,且状态转移是非随机的(如图5-1所示)。

 

正是如此众多的状态及其复杂的转换关系,导致SDRAM的控制较为复杂。通常FPGA开发人员在设计SDRAM控制器IP时需要详细了解这些状态机的过程。而一般开发人员以了解为主。

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第6张图片

图5-1 SDRAM状态机

 

下面将结合上图及SDRAM的指令来分析SDRAM的控制时序

 

2、SDRAM single模式读时序

 

SDRAM初始化主要是由设置S3C2410 SDRAM控制器的模式寄存器(MRSR)完成的。主要设定了SDRAM的burst长度、CAS延时时间、突发类型等。然后就可以进行读写操作了。

 

下图是S3C2410以single方式读SDRAM时的时序。

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第7张图片

 

对照HY57V5620的命令表,列出single read 命令实现过程。

 

3、SDRAM burst模式读时序

 

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第8张图片

 

对照HY57V5620的命令表,列出burst read 命令实现过程。

 

4、SDRAM Self Refresh时序

 

SDRAM 的Self Refresh功能在电源电源管理时经常使用,如:在主控器进入sleep状态时,会先让SDRAM工作在Self Refresh状态。下图为S3C2410发出Self Refresh命令时的时序图。

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第9张图片

 

对照HY57V5620的命令表,列出进入Self Refresh的过程。

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第10张图片

 

5、S3C2410 BUS Request时SDRAM控制时序

 

我以前在做一个项目时涉及到两个主控器共享一个SDRAM的情况。现象是另一个主控器可以通过BUS Request功能获取到总线的控制权。当S3C2410的总线控制权被获取后,SDRAM控制不会再发出控制时钟信号。但SDRAM并没有因为失去时钟而丢失数据。猜想一定是S3C2410在BUS Request时让SDRAM进入自刷新状态(就和S3C2410睡眠前要让SDRAM进入自刷新状态一样)、POWER DOWN状态、或者SUSPEND状态。下面就根据S3C2410 BUS Request时SDRAM控制时序图去确认一下到底是哪种。

 

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第11张图片

 

对照HY57V5620的命令表,列出S3C2410 BUS Request时SDRAM时序过程。

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第12张图片

 

Note1:在第10个时钟周期时,SKE从1变为’HZ’(高阻)。我想此时SCKE从1变为高阻对于SDRAM来说相当于从1->0吧,看了一遍HY57V5620手册,这个想法没有得到确认。但也只能这么理解了,不然后面都说不通了。我想之所以变为高阻而不是低电平,是因为S3C2410要放弃自己对总线控制。


结合HY57V5620手册分析一下此时SDRAM会进入什么状态。

 

下图是CKE Enable(CKE) 真值表。

SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2)_第13张图片

 

在第10个时钟周期时,SDRAM处于行激活状态。此时SCKE由1->0, 根据真值表可以得出系统会进入Clock suspend状态

 

六、总结

本文分析了SDRAM的工作原理、介绍了HY57V561620及其与S3C2410的接线原理、S3C2410 SDRAM控制器的配置方法、及部分SDRAM的控制时序分析。有些地方理解的不够深刻,欢迎大家指正。

 

作者:刘洪涛,华清远见嵌入式学院讲师。

你可能感兴趣的:(SDRAM工作原理及S3C2410 SDRAM控制器配置方法(2))