UVALive 3263 That Nice Euler Circuit

   给出一个点的序列,按顺序做一笔画,求最后的图形把平面分成了几部分。

   欧拉定理:E:线段数,V节点数,F平面数;有F+V-E==2.

   所以存下来所有线段之后,求出不同的交点数,再根据这些交点找出分割后的线段数,最后又公式算出F即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
typedef double type;
using namespace std;
struct Point
{
    type x,y;
    Point(){}
    Point(type a,type b)
    {
        x=a;
        y=b;
    }
    void read()
    {
        scanf("%lf%lf",&x,&y);
    }
    void print()
    {
        printf("%.6lf %.6lf",x,y);
    }

};
typedef Point Vector;
Vector operator + (Vector A,Vector B)
{
    return Vector(A.x+B.x,A.y+B.y);
}
Vector operator - (Point A,Point B)
{
    return Vector(A.x-B.x,A.y-B.y);
}
Vector operator * (Vector A,type p)
{
    return Vector(A.x*p,A.y*p);
}
Vector operator / (Vector A,type p)
{
    return Vector(A.x/p,A.y/p);
}
bool operator < (const Point &a,const Point &b)
{
    return a.x<b.x || (a.x==b.x && a.y<b.y);
}
const double eps=1e-10;
int dcmp(double x)
{
    if (fabs(x)<eps) return 0;
    else return x<0?-1:1;
}
bool operator == (const Point& a,const Point b)
{
    return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
}
//atan2(x,y) :向量(x,y)的极角,即从x轴正半轴旋转到该向量方向所需要的角度。
type Dot(Vector A,Vector B)
{
    return A.x*B.x+A.y*B.y;
}
type Cross(Vector A,Vector B)
{
    return A.x*B.y-A.y*B.x;
}
type Length(Vector A)
{
    return sqrt(Dot(A,A));
}
type Angle(Vector A,Vector B)
{
    return acos(Dot(A,B))/Length(A)/Length(B);
}

type Area2(Point A,Point B,Point C)
{
    return Cross(B-A,C-A);
}
Vector Rotate(Vector A,double rad)
{
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

Vector Normal(Vector A)//单位法线,左转90度,长度归一
{
    double L=Length(A);
    return Vector(-A.y/L,A.x/L);
}

Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
    Vector u=P-Q;
    double t=Cross(w,u)/Cross(v,w);
    return P+v*t;
}

double DistanceToLine(Point P,Point A,Point B)
{
    Vector v1=B-A,v2=P-A;
    return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P,Point A,Point B)
{
    if (A==B) return Length(P-A);
    Vector v1=B-A,v2=P-A,v3=P-B;
    if (dcmp(Dot(v1,v2))<0) return Length(v2);
    else if (dcmp(Dot(v1,v3))>0) return Length(v3);
    else return fabs(Cross(v1,v2))/Length(v1);
}
Point GetLineProjection(Point P,Point A,Point B)//P在AB上的投影
{
    Vector v=B-A;
    return A+v*(Dot(v,P-A)/Dot(v,v));
}

bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
    c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}

bool OnSegment(Point p,Point a1,Point a2)
{
    return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;
}

double ConvexPolygonArea(Point* p,int n)//多边形面积
{
    double area=0;
    for (int i=1; i<n-1; i++)
    area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2.0;
}
double PolygonArea(Point* p,int n)//有向面积
{
    double area=0;
    for (int i=1; i<n-1; i++)
    area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2.0;
}
Point p[1020];
Point ans[123000];

int cnt;
int n;
int main()
{
//    freopen("in.txt","r",stdin);
    int tt=0;
    while(~scanf("%d",&n) && n)
    {
        tt++;
        for (int i=0; i<n; i++)
        p[i].read();
        n--;
        cnt=n;
        memcpy(ans,p,sizeof p);

        for (int i=0; i<n; i++)
         for (int j=i+1; j<n; j++)
         {
             if (SegmentProperIntersection(p[i],p[i+1],p[j],p[j+1]))
             {
                 ans[cnt++]=GetLineIntersection(p[i],p[i+1]-p[i],p[j],p[j+1]-p[j]);
             }
         }
        sort(ans,ans+cnt);
        cnt=unique(ans,ans+cnt)-ans;
        int e=n;
        for (int i=0; i<cnt; i++)
         for (int j=0; j<n; j++)
         {
             if (OnSegment(ans[i],p[j],p[j+1]))
             {
                e++;
             }
         }
        printf("Case %d: There are %d pieces.\n",tt,e+2-cnt);

    }
    return 0;
}



你可能感兴趣的:(UVALive 3263 That Nice Euler Circuit)