CMO 2012回馈(gauss整数解)

CMO 2012回馈(gauss整数解)_第1张图片

CMO 2012回馈(gauss整数解)_第2张图片

本题是CMO(数学 Olympics) 2012 第二题

所以还是很坑的……(出题人是shuxuedi)

反正这题总算是写了一个远远长于正解的打表(Gauss消元-判断有无整数解/无解,已确定答案是否可行)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
long long gcd(long long a,long long b){if (!b) return a;return gcd(b,a%b);}
long long lcm(long long a,long long b){return a/gcd(a,b)*b;}
int n,a[10][10],b[100]={0};
int f[100+10][100+10]={0},un_fre[2*MAXN]={0};
int f2[100+10][100+10]={0};
void print()
{
	For(i,2*n)
	{
		For(j,2*n+1) cout<<f2[i][j]<<' ';
		cout<<endl;
	}
	cout<<endl;
}
int gauss(int N)
{
	memcpy(f2,f,sizeof(f));
	//print();
	memset(un_fre,0,sizeof(un_fre));
	int k=1;
	For(i,2*n)
	{
		int t=0;
		Fork(j,k,N) if (f2[j][i]) t=j;
		if (!t) continue;//cout<<t<<' '<<i<<' '<<f[t][i]<<' '<<k<<endl;
		//print();
		swap(f2[k],f2[t]);
		//print();
		Fork(j,1,N)
		{
			if (j^k&&f2[j][i]) 
			{
				int _l=lcm(abs(f2[j][i]),abs(f2[k][i]));
				int ta=_l/f2[k][i],tb=_l/f2[j][i];
				Fork(l,1,2*n+1) f2[j][l]=f2[k][l]*ta-f2[j][l]*tb;
			}
		}
		un_fre[k]=i;		 
		k++;
	}k--;
	/*
	For(i,k)
	{
		if (f[i][2*n+1]%f[i][un_fre[i]]) return 2;
		else f[i][2*n+1]/=f[i][un_fre[i]];
		//if (f[i][2*n+1]<0) return -1;
	}*/
	//cout<<k<<endl;
	
	Fork(i,k+1,N)
	{
		if (f2[i][2*n+1]) return 0;
	}
	//print();
	/*
	For(i,k)
	{
		cout<<un_fre[i]<<':'<<f2[i][2*n+1]<<' ';
	}cout<<endl;*/
	//print();
	//system("pause");
	return 1;
		
}
int tot=0;
void dfs(int i,int j)
{
	if (j>n) i++,j=1;
	if (i==n+1)
	{
		tot++;
		For(i,n)
		{
			For(j,n) cout<<a[i][j]<<' ';
			cout<<endl;
		}
		cout<<endl;
	}	
	For(p,n*n) if (!b[p])
	{
		b[p]=1;
		a[i][j]=p;
		//memset(f[(i-1)*n+j],0,sizeof(f[(i-1)*n+j]));
		f[(i-1)*n+j][i]=f[(i-1)*n+j][n+j]=1;f[(i-1)*n+j][2*n+1]=p;
		if ((i-1)*n+j==n*n) if (gauss((i-1)*n+j)^1) {b[p]=0;continue;}
		dfs(i,j+1);
		b[p]=0;
	}
}
int main()
{
//	freopen("repay.in","r",stdin);
//	freopen(".out","w",stdout);
	cin>>n;
	dfs(1,1);
	cout<<tot<<endl;
	return 0;
}

好吧……到4已经打不出表了……

观察后发现:

每个矩阵满足如下性质

每行or 每列 数字集合一定是kp+1,kp+2...kp+p 型

1 2 3           4 7 1

4 5 6   or    5 8 2

7 8 9           6 3 9

行和列可以互换(必须整行整列)

于是答案就是2(行/列)*(p!)第一行排列顺序(p!)行的排列顺序

这题尽管n很大,但是过了10007以后就都是0了

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (10007)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
long long n;
int main()
{
	freopen("repay.in","r",stdin);
	freopen("repay.out","w",stdout);
	cin>>n;
	long long ans=2;
	For(i,n)
	{
		if (ans==0) break;
		ans=mul(ans,i);ans=mul(ans,i);
	}
	cout<<ans<<endl;

	return 0;
}


你可能感兴趣的:(CMO 2012回馈(gauss整数解))