BUPT Summer training 1
题意:随机往磁性矩形平面各个位置投掷磁性质点,质点会被吸到与其距离最近的整数点,相当与质点落在各个整数点的概率是相等的。在平面内部有一多边形,只有当质点落到多边形内部或者边缘才能得分,得分为a*x+b*y。a,b为题目给定,(x,y)是落点坐标。
解法:只要求出落在多边形内部和边缘的点。因为每个点所能吸收的区域是以该点为中心,边长为1的小矩形。落在大矩形顶点的点要*0.25,在边缘的点*0.5。
//Memory: 188 KB //Time: 680 MS #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cmath> using namespace std; const double eps = 1e-10; const int maxn = 35; int dcmp(double x) { if(fabs(x)<eps) return 0; else return x < 0? -1:1; } struct Point{ double x,y; Point(){}; Point (double a,double b):x(a),y(b){}; Point operator - (const Point &a)const {return Point (x - a.x , y - a.y );} bool operator == (const Point &a)const { return dcmp(x-a.x)==0&&dcmp(y-a.y)==0; } void input() { scanf("%lf%lf",&x,&y); } void output() { printf("%.2lf %.2lf\n",x,y); } }; typedef Point Vector; double Cross(Vector a, Vector b) { return a.x*b.y-a.y*b.x; } double Dot(Vector a, Vector b) { return a.x*b.x+a.y*b.y; } bool Onseg(Point p, Point a, Point b) { return dcmp(Cross(a-p,b-p))==0&&dcmp(Dot(a-p,b-p))<=0; } int Ispinpoly(Point p, Point *poly,int n) { int wn = 0; for(int i = 0; i < n; i++) { const Point p1 = poly[i],p2 = poly[(i+1)%n]; if(Onseg(p,p1,p2)) return 1; int k = dcmp(Cross(p2-p1, p-p1)); int d1 = dcmp(p1.y - p.y); int d2 = dcmp(p2.y - p.y); if(k > 0 && d1 <= 0 && d2 > 0) wn++; if(k < 0 && d2 <= 0 && d1 > 0) wn--; } if(wn!=0) return 1; else return 0; } double judge(Point p,Point a,Point b) { if(p==a||p==b||Point(a.x,b.y)==p||Point(b.x,a.y)==p) return 4.0; if(dcmp(p.x-a.x)==0||dcmp(p.x-b.x)==0||dcmp(p.y-a.y)==0||dcmp(p.y-b.y)==0) return 2.0; return 1.0; } int main() { //freopen("in.txt","r",stdin); Point p,q,poly[maxn],tmp; int n,a,b,cnt; while(scanf("%lf%lf",&p.x,&p.y)!=EOF) { cnt = 0; q.input(); scanf("%d%d%d",&n,&a,&b); for(int i = 0; i < n; i++) { poly[i].input(); } double ans = 0; for(int i = (int)p.x; i <= (int)q.x; i++) for(int j = (int)p.y; j <= (int)q.y; j++) { tmp.x = i,tmp.y = j; if(Ispinpoly(tmp,poly,n)) { //ans+=(a*i+b*j)/judge(tmp,p,q); double l=max(i-0.5,p.x),r=min(i+0.5,q.x); double d=max(j-0.5,p.y),u=min(j+0.5,q.y); ans+=(r-l)*(u-d)*(a*i+b*j); } } printf("%.3f\n",ans/((q.x-p.x)*(q.y-p.y))+eps); } return 0; }