gpio键盘的原理

gpio键盘

1,定义gpio键盘的设备数据结构platform_device

#define RX51_GPIO_CAMERA_LENS_COVER 110
#define RX51_GPIO_CAMERA_FOCUS  68
#define RX51_GPIO_CAMERA_CAPTURE 69
#define RX51_GPIO_KEYPAD_SLIDE  71
#define RX51_GPIO_LOCK_BUTTON  113
#define RX51_GPIO_PROXIMITY  89

#define RX51_GPIO_DEBOUNCE_TIMEOUT 10

static struct gpio_keys_button rx51_gpio_keys[] = {
 {
  .desc   = "Camera Lens Cover",
  .type   = EV_SW,
  .code   = SW_CAMERA_LENS_COVER,
  .gpio   = RX51_GPIO_CAMERA_LENS_COVER,
  .active_low  = 1,
  .debounce_interval = RX51_GPIO_DEBOUNCE_TIMEOUT,
 }, {
  .desc   = "Camera Focus",
  .type   = EV_KEY,
  .code   = KEY_CAMERA_FOCUS,
  .gpio   = RX51_GPIO_CAMERA_FOCUS,
  .active_low  = 1,
  .debounce_interval = RX51_GPIO_DEBOUNCE_TIMEOUT,
 }, {
  .desc   = "Camera Capture",
  .type   = EV_KEY,
  .code   = KEY_CAMERA,
  .gpio   = RX51_GPIO_CAMERA_CAPTURE,
  .active_low  = 1,
  .debounce_interval = RX51_GPIO_DEBOUNCE_TIMEOUT,
 }, {
  .desc   = "Lock Button",
  .type   = EV_KEY,
  .code   = KEY_SCREENLOCK,
  .gpio   = RX51_GPIO_LOCK_BUTTON,
  .active_low  = 1,
  .debounce_interval = RX51_GPIO_DEBOUNCE_TIMEOUT,
 }, {
  .desc   = "Keypad Slide",
  .type   = EV_SW,
  .code   = SW_KEYPAD_SLIDE,
  .gpio   = RX51_GPIO_KEYPAD_SLIDE,
  .active_low  = 1,
  .debounce_interval = RX51_GPIO_DEBOUNCE_TIMEOUT,
 }, {
  .desc   = "Proximity Sensor",
  .type   = EV_SW,
  .code   = SW_FRONT_PROXIMITY,
  .gpio   = RX51_GPIO_PROXIMITY,
  .active_low  = 0,
  .debounce_interval = RX51_GPIO_DEBOUNCE_TIMEOUT,
 }
};

static struct gpio_keys_platform_data rx51_gpio_keys_data = {
 .buttons = rx51_gpio_keys,
 .nbuttons = ARRAY_SIZE(rx51_gpio_keys),
};

static struct platform_device rx51_gpio_keys_device = {
 .name = "gpio-keys",
 .id = -1,
 .dev = {
  .platform_data = &rx51_gpio_keys_data,
 },
};

2,定义gpio键盘的驱动数据结构platform_driver

static struct platform_driver gpio_keys_device_driver = {
 .probe  = gpio_keys_probe,
 .remove  = __devexit_p(gpio_keys_remove),
 .driver  = {
  .name = "gpio-keys",
  .owner = THIS_MODULE,
#ifdef CONFIG_PM
  .pm = &gpio_keys_pm_ops,
#endif
 }
};

 

3,注册平台设备 

static void __init rx51_add_gpio_keys(void)
{
 platform_device_register(&rx51_gpio_keys_device);
}

 

platform_driver 和platform_device的.name = "gpio-keys",都是一样。device和driver的名字一样就回调用probe函数

gpio_keys_probe();

probe函数的具体实现

static int __devinit gpio_keys_probe(struct platform_device *pdev)
{
 struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
 struct gpio_keys_drvdata *ddata;
 struct input_dev *input;
 int i, error;
 int wakeup = 0;

 ddata = kzalloc(sizeof(struct gpio_keys_drvdata) +
   pdata->nbuttons * sizeof(struct gpio_button_data),
   GFP_KERNEL);
 input = input_allocate_device();
 if (!ddata || !input) {
  error = -ENOMEM;
  goto fail1;
 }

 platform_set_drvdata(pdev, ddata);

 input->name = pdev->name;
 input->phys = "gpio-keys/input0";
 input->dev.parent = &pdev->dev;

 input->id.bustype = BUS_HOST;
 input->id.vendor = 0x0001;
 input->id.product = 0x0001;
 input->id.version = 0x0100;

 /* Enable auto repeat feature of Linux input subsystem */
 if (pdata->rep)
  __set_bit(EV_REP, input->evbit);

 ddata->input = input;

 for (i = 0; i < pdata->nbuttons; i++) {
  struct gpio_keys_button *button = &pdata->buttons[i];
  struct gpio_button_data *bdata = &ddata->data[i];
  int irq;
  unsigned int type = button->type ?: EV_KEY;

  bdata->input = input;
  bdata->button = button;
  setup_timer(&bdata->timer,
       gpio_keys_timer, (unsigned long)bdata);
  INIT_WORK(&bdata->work, gpio_keys_report_event);

  error = gpio_request(button->gpio, button->desc ?: "gpio_keys");
  if (error < 0) {
   pr_err("gpio-keys: failed to request GPIO %d,"
    " error %d/n", button->gpio, error);
   goto fail2;
  }

  error = gpio_direction_input(button->gpio);
  if (error < 0) {
   pr_err("gpio-keys: failed to configure input"
    " direction for GPIO %d, error %d/n",
    button->gpio, error);
   gpio_free(button->gpio);
   goto fail2;
  }

  irq = gpio_to_irq(button->gpio);
  if (irq < 0) {
   error = irq;
   pr_err("gpio-keys: Unable to get irq number"
    " for GPIO %d, error %d/n",
    button->gpio, error);
   gpio_free(button->gpio);
   goto fail2;
  }

  error = request_irq(irq, gpio_keys_isr,
        IRQF_SHARED |
        IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
        button->desc ? button->desc : "gpio_keys",
        bdata);
  if (error) {
   pr_err("gpio-keys: Unable to claim irq %d; error %d/n",
    irq, error);
   gpio_free(button->gpio);
   goto fail2;
  }

  if (button->wakeup)
   wakeup = 1;

  input_set_capability(input, type, button->code);
 }

 error = input_register_device(input);
 if (error) {
  pr_err("gpio-keys: Unable to register input device, "
   "error: %d/n", error);
  goto fail2;
 }

 device_init_wakeup(&pdev->dev, wakeup);

 return 0;

 fail2:
 while (--i >= 0) {
  free_irq(gpio_to_irq(pdata->buttons[i].gpio), &ddata->data[i]);
  if (pdata->buttons[i].debounce_interval)
   del_timer_sync(&ddata->data[i].timer);
  cancel_work_sync(&ddata->data[i].work);
  gpio_free(pdata->buttons[i].gpio);
 }

 platform_set_drvdata(pdev, NULL);
 fail1:
 input_free_device(input);
 kfree(ddata);

 return error;
}

static int __devexit gpio_keys_remove(struct platform_device *pdev)
{
 struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
 struct gpio_keys_drvdata *ddata = platform_get_drvdata(pdev);
 struct input_dev *input = ddata->input;
 int i;

 device_init_wakeup(&pdev->dev, 0);

 for (i = 0; i < pdata->nbuttons; i++) {
  int irq = gpio_to_irq(pdata->buttons[i].gpio);
  free_irq(irq, &ddata->data[i]);
  if (pdata->buttons[i].debounce_interval)
   del_timer_sync(&ddata->data[i].timer);
  cancel_work_sync(&ddata->data[i].work);
  gpio_free(pdata->buttons[i].gpio);
 }

 input_unregister_device(input);

 return 0;
0,初始化工作队列INIT_WORK(&bdata->work, gpio_keys_report_event);

1,主要是分配一个input设备 input_allocate_device();

2,按键中断请求

3,设置gpio为输入,gpio_direction_input(button->gpio);

 4, 获取gpio的中断号 irq = gpio_to_irq(button->gpio);

5,中断申请 error = request_irq(irq, gpio_keys_isr,
        IRQF_SHARED |
        IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
        button->desc ? button->desc : "gpio_keys",
        bdata);

6, 初始化是否可以唤醒

 if (button->wakeup)
   wakeup = 1;
7,初始化按键的类型和按键码  input_set_capability(input, type, button->code);

8,注册input设备error = input_register_device(input);

9,初始化唤醒源 device_init_wakeup(&pdev->dev, wakeup);

 

4,注册成功后,当有按键按下时就调用中断回调函数

static irqreturn_t gpio_keys_isr(int irq, void *dev_id)
{
 struct gpio_button_data *bdata = dev_id;
 struct gpio_keys_button *button = bdata->button;

 BUG_ON(irq != gpio_to_irq(button->gpio));

 if (button->debounce_interval)
  mod_timer(&bdata->timer,
   jiffies + msecs_to_jiffies(button->debounce_interval));
 else
  schedule_work(&bdata->work);

 return IRQ_HANDLED;
}

最终执行工作队列的线程函数gpio_keys_report_event

static void gpio_keys_report_event(struct work_struct *work)
{
 struct gpio_button_data *bdata =
  container_of(work, struct gpio_button_data, work);
 struct gpio_keys_button *button = bdata->button;
 struct input_dev *input = bdata->input;
 unsigned int type = button->type ?: EV_KEY;
 int state = (gpio_get_value(button->gpio) ? 1 : 0) ^ button->active_low;

 input_event(input, type, button->code, !!state);
 input_sync(input);
}

根据gpio的状态为按键按下还是弹开,上报按键键码的事件sendevent

 

如果CPU是在睡眠状态,按键又定义了可以唤醒功能,也就是在board文件定义了(.wakeup            = 0,),那么CPU睡眠之前的时候执行suspend函数

static int gpio_keys_suspend(struct device *dev)
{
 struct gpio_keys_drvdata *ddata = dev_get_drvdata(dev);
 int i;

 if (device_may_wakeup(dev)) {
  for (i = 0; i < ddata->n_buttons; i++) {
   struct gpio_button_data *bdata = &ddata->data[i];
   if (bdata->button->wakeup)
    enable_irq_wake(bdata->irq);
  }
 }

 return 0;
}

static inline bool device_may_wakeup(struct device *dev)
{
 return dev->power.can_wakeup && !!dev->power.wakeup;
}

通过enable_irq_wake(bdata->irq);设置对应的GPIO允许唤醒功能。当CPU睡眠后,对按键按下去,触发CPU唤醒,执行相应的resume函数

static int gpio_keys_resume(struct device *dev)
{
 struct gpio_keys_drvdata *ddata = dev_get_drvdata(dev);
 int i;

 for (i = 0; i < ddata->n_buttons; i++) {
  struct gpio_button_data *bdata = &ddata->data[i];
  if (bdata->button->wakeup && device_may_wakeup(dev))
   disable_irq_wake(bdata->irq);

  if (gpio_is_valid(bdata->button->gpio))
   gpio_keys_gpio_report_event(bdata);
 }
 input_sync(ddata->input);

 return 0;
}

先关闭相应的GPIO的唤醒,判断GPIO是否合法,如果合法就执行gpio_keys_gpio_report_event(bdata);上报按键事件给上层。

static void gpio_keys_gpio_report_event(struct gpio_button_data *bdata)
{
 const struct gpio_keys_button *button = bdata->button;
 struct input_dev *input = bdata->input;
 unsigned int type = button->type ?: EV_KEY;
 int state = (gpio_get_value_cansleep(button->gpio) ? 1 : 0) ^ button->active_low;

 if (type == EV_ABS) {
  if (state)
   input_event(input, type, button->code, button->value);
 } else {
  input_event(input, type, button->code, !!state);
 }
 input_sync(input);
}

gpio_keys_gpio_report_event(bdata);函数的功能是通过读board文件的配置表是否为按键,如果为按键就配置type为EV_KEY,通过gpio_get_value_cansleep(button->gpio)

读GPIO的电平和board文件的GPIO键盘配置表的button->active_low做异或运算最为上报的事件状态,也就是如果低电平有效,那么board文件的GPIO键盘配置表的button->active_low 定义为1,如果按键按下去,(gpio_get_value_cansleep(button->gpio)读出GPIO的电平为0,那么(gpio_get_value_cansleep(button->gpio) ? 1 : 0) ^ button->active_low;

的结果为0和1做异或运算,结果为1. 由于在board文件定义事件类型为按键type              = EV_KEY,所以执行input_event(input, type, button->code, !!state);
上报按键事件给上层了,紧跟着这些input_sync(input);上报同步事件。完成了按键按下的事件的上报。系统处于工作状态,如果按键弹开就这些中断服务程序了。

static irqreturn_t gpio_keys_gpio_isr(int irq, void *dev_id)
{
 struct gpio_button_data *bdata = dev_id;

 BUG_ON(irq != bdata->irq);

 if (bdata->timer_debounce)
  mod_timer(&bdata->timer,
   jiffies + msecs_to_jiffies(bdata->timer_debounce));
 else
  schedule_work(&bdata->work);

 return IRQ_HANDLED;
}

中断服务程序处理过程是判断board文件定义的键盘数据结构是否有防抖时间初始化bdata->timer_debounce,如果有定义防抖时间就设置定时器的定时时间bdata->timer_debounce,启动定时器bdata->timer。定时器的初始化为

setup_timer(&bdata->timer,  gpio_keys_gpio_timer, (unsigned long)bdata);

gpio_keys_gpio_timer为定时器的。

当定时器的时间到了,就执行回调函数

static void gpio_keys_gpio_timer(unsigned long _data)
{
 struct gpio_button_data *bdata = (struct gpio_button_data *)_data;

 schedule_work(&bdata->work);
}

回调函数干的活就是调度工作队列schedule_work(&bdata->work);

工作队列的初始化为

  INIT_WORK(&bdata->work, gpio_keys_gpio_work_func);

gpio_keys_gpio_work_func为工作队列&bdata->work的执行函数

所以调度工作队列schedule_work(&bdata->work)后,将gpio_keys_gpio_work_func放人工作队列执行。

gpio_keys_gpio_work_func的实现为

static void gpio_keys_gpio_work_func(struct work_struct *work)
{
 struct gpio_button_data *bdata =
  container_of(work, struct gpio_button_data, work);

 gpio_keys_gpio_report_event(bdata);
}

也就是这些gpio_keys_gpio_report_event(bdata);
和上面唤醒的时候执行一样,对GPIO的电平,设置状态,上报事件。

 

 



 

 

 

 


 

 

 


 

 

 

你可能感兴趣的:(gpio键盘的原理)