Time Limit: 1000MS |
|
Memory Limit: 65536K |
Total Submissions: 8323 |
|
Accepted: 3616 |
Description
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.
An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.
As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.
For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.
Input
Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
Output
For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
Sample Input
21
85
789
0
Sample Output
21 0
85 5
789 62
题意:题目看得好吃力,题意说详细点。规定被4整除余1的数叫做H-number。H-number分为三类:
①:H-prime为H-number中的素数,在H-number中这种数只能1和自身整除,不能被其他的H-number整除。但是可以被非H-number的数整除。 例如21, 首先是一个H-number,它能被1,3,7,21整除,因为3,7不是H-number,所以21是H-prime。
②:H-semi-prime由两个H-prime相乘得到的。
③:剩下的数为H-composite。
题解:艾氏筛法的变形,先筛选出H-primes,再记录下H-semi-primes,最后记录下从1到h的H-semi-primes的个数就行了。
代码如下:
#include<cstdio> #define maxn 1000010 int H_primes[maxn],H_semi_primes[maxn]; int num_primes[maxn]; void table()//弱弱地打表,有菊苣打表0MS,屌炸了 { int i,j; H_primes[1]=0; //*********艾氏筛法******** for(i=5;i<maxn;i+=4) { if(H_primes[i]) continue; for(j=i*5;j<maxn;j+=i*4) H_primes[j]=1; } //************************* int cnt; for(i=5;i<maxn;i+=4)//确定H-semi-primes { for(j=5;j<maxn;j+=4) { if(i*j>maxn)//注意这里优化 break; if(!H_primes[i]&&!H_primes[j]) H_semi_primes[i*j]=1; } } cnt=0; for(i=5;i<maxn;++i)//统计从0到i的H-semi-primes的个数 { if(H_semi_primes[i]) num_primes[i]=++cnt; else num_primes[i]=cnt; } } int main() { int n; table(); while(scanf("%d",&n)&&n) { printf("%d %d\n",n,num_primes[n]); } return 0; }