【HDU】3879 Base Station 最大权闭合子图

传送门:【HDU】3879 Base Station


题目分析:最大权闭合子图。。。所有公司向汇点建边,容量为花费,每条边用一个点表示,源点向这条边代表的点建边,容量为利益,这个点向代表的边的头尾建边,容量为INF。跑一遍最大流,边的利益总和减去最小割就是答案。


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

#define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )

const int MAXN = 55005 ;
const int MAXQ = 55005 ;
const int MAXE = 1000005 ;
const int INF = 0x3f3f3f3f ;

struct Edge {
	int v , n , c ;
	Edge () {}
	Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {}
} ;

struct Net {
	Edge E[MAXE] ;
	int H[MAXN] , cntE ;
	int d[MAXN] , num[MAXN] , cur[MAXN] , pre[MAXN] ;
	int Q[MAXQ] , head , tail ;
	int s , t , nv ;
	int n , m ;
	int flow ;
	
	void init () {
		cntE = 0 ;
		CLR ( H , -1 ) ;
	}
	
	void addedge ( int u , int v , int c ) {
		E[cntE] = Edge ( v , c , H[u] ) ;
		H[u] = cntE ++ ;
		E[cntE] = Edge ( u , 0 , H[v] ) ;
		H[v] = cntE ++ ;
	}
	
	void rev_bfs () {
		CLR ( d , -1 ) ;
		CLR ( num , 0 ) ;
		head = tail = 0 ;
		Q[tail ++] = t ;
		d[t] = 0 ;
		num[d[t]] = 1 ;
		while ( head != tail ) {
			int u = Q[head ++] ;
			for ( int i = H[u] ; ~i ; i = E[i].n ) {
				int v = E[i].v ;
				if ( ~d[v] )
					continue ;
				d[v] = d[u] + 1 ;
				num[d[v]] ++ ;
				Q[tail ++] = v ;
			}
		}
	}
	
	int ISAP () {
		CPY ( cur , H ) ;
		rev_bfs () ;
		flow = 0 ;
		int u = pre[s] = s ;
		while ( d[s] < nv ) {
			if ( u == t ) {
				int f = INF , pos ;
				for ( int i = s ; i != t ; i = E[cur[i]].v )
					if ( f > E[cur[i]].c ) {
						f = E[cur[i]].c ;
						pos = i ;
					}
				for ( int i = s ; i != t ; i = E[cur[i]].v ) {
					E[cur[i]].c -= f ;
					E[cur[i] ^ 1].c += f ;
				}
				flow += f ;
				u = pos ;
			}
			for ( int &i = cur[u] ; ~i ; i = E[i].n )
				if ( E[i].c && d[u] == d[E[i].v] + 1 )
					break ;
			if ( ~cur[u] ) {
				pre[E[cur[u]].v] = u ;
				u = E[cur[u]].v ;
			}
			else {
				if ( 0 == ( -- num[d[u]] ) )
					break ;
				int mmin = nv ;
				for ( int i = H[u] ; ~i ; i = E[i].n )
					if ( E[i].c && mmin > d[E[i].v] ) {
						cur[u] = i ;
						mmin = d[E[i].v] ;
					}
				d[u] = mmin + 1 ;
				num[d[u]] ++ ;
				u = pre[u] ;
			}
		}
		return flow ;
	}
	
	void solve () {
		int sum = 0 ;
		int u , v , c ;
		init () ;
		s = 0 ;
		t = n + m + 1 ;
		nv = t + 1 ;
		FOR ( i , 1 , n ) {
			scanf ( "%d" , &c ) ;
			addedge ( i , t , c ) ;
		}
		FOR ( i , 1 , m ) {
			scanf ( "%d%d%d" , &u , &v , &c ) ;
			addedge ( s , i + n , c ) ;
			addedge ( i + n , u , INF ) ;
			addedge ( i + n , v , INF ) ;
			sum += c ;
		}
		printf ( "%d\n" , sum - ISAP () ) ;
	}
} x ;

int main () {
	while ( ~scanf ( "%d%d" , &x.n , &x.m ) )
		x.solve () ;
	return 0 ;
}


你可能感兴趣的:(HDU)